(This paper was rapporteured in lecture EX5/3)
D. R. Ernst , S. Batha 1, M. Beer ,
M. G. Bell , R. E. Bell , R. V. Budny , B. Coppi 2,
W. Dorland 3, P. C. Efthimion , T. S. Hahm ,
G. W. Hammett , R. J. Hawryluk , K. W. Hill ,
M. Kotschenreuther 4, F. M. Levinton 1, Z. Lin ,
D. K. Mansfield , R. Nazikian , M. Porkolab 2,
G. Rewoldt , S. D. Scott , E. J. Synakowski ,
M. C. Zarnstorff and the TFTR Team
Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA
1 Fusion Physics and Technology Inc., Torrance, California USA
2 Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
3 University of Maryland, College Park, Maryland, USA
4 Institute for Fusion Studies, University of Texas-Austin, Texas, USA
Abstract
Turbulence suppression by radial electric field shear () is
shown to be important in the enhanced confinement of TFTR supershot plasmas.
Simulations of supershot ion temperature profiles are performed using an
existing parameterization of transport due to toroidal ion temperature
gradient modes, extended to include suppression by shear. New
spectroscopic measurements of differ significantly from prior
neoclassical estimates. Supershot temperature profiles appear to be consistent
with a criterion describing near-complete turbulence suppression by
intrinsically generated shear. Helium spoiling and xenon puffing
experiments are simulated to illustrate the role of shear in the
confinement changes observed.
IAEA 1999