(OV/4-5) Overview of the FTU Results
F. Romanelli1),
B. Angelini1),
M.L. Apicella1),
G. Apruzzese1),
E. Barbato1),
A. Bertochi1),
G. Bracco1),
A. Bruschi2),
G. Buceti1),
P. Buratti1),
A. Cardinali1),
L. Carraro3),
C. Castaldo1),
C. Centioli1),
R. Cesario1),
S. Cirant2),
V. Cocilovo1),
F. Crisanti1),
R. De Angelis1),
M. De Benedetti1),
G. Giruzzi4),
F. De Marco1),
B. Esposito1),
M. Finkenthal5),
D. Frigione1),
L. Gabellieri1),
F. Gandini2),
L. Garzotti3),
G. Gatti1),
E. Giovannozzi1),
C. Gormezano1),
F. Gravanti1),
G. Granucci2),
M. Grolli1),
F. Iannone1),
H. Kroegler1),
E. Lazzaro2),
M. Leigheb1),
G. Maddaluno1),
G. Maffia1),
M. Marinucci1),
M. Mattioli6),
G. Mazzitelli1),
F. Mirizzi1),
S. Nowak2),
D. Pacella1),
L. Panaccione1),
M. Panella1),
P. Papitto1),
V. Pericoli-Ridolfini1),
A.A. Petrov7),
L. Pieroni1),
S. Podda1),
F. Poli6),
M.E. Puiatti3),
G. Ravera1),
G.B. Righetti1),
M. Romanelli1),
F. Santini1),
M. Sassi1),
A. Saviliev8),
P. Scarin3),
S.E. Segre9),
A. Simonetto2),
P. Smeulders1),
E. Sternini1),
C. Sozzi2),
N. Tartoni1),
B. Tilia1),
A.A. Tuccillo1),
O. Tudisco1),
M. Valisa3),
V. Vershkov10),
V. Vitale1),
G. Vlad1),
V. Zanza1),
M. Zerbini1),
F. Zonca1)
1) Associazione EURATOM/ENEA Sulla Fusione, Rome, Italy
2) Associazione EURATOM-ENEA-CNR sulla Fusione, Istituto di Fisica del Plasma, Milano, Italy
3) Consorzio RFX, Padova, Italy
4) Association EURATOM-CEA, Cadarache, Saint-Paul-lez-Durance, France
5) The John Hopkins University, Baltimore, MD, USA
6) ENEA guest
7) State Research Center of Russian Federation, Troitsk Institute for Innovation and Fusion Research, SRC RF TRINITI, Troitsk, Moskow region, Russia
8) A.F. Ioffe Physico-Technical Institute RAS, St. Petersburg, Russian Federation
9) Dipartimento di Fisica, II Università di Roma ``Tor Vergata", Rome, Italy
10) Nuclear Fusion Institute, RRC Kurchatov Institute, Moskow, Russian Federation
Abstract. FTU is a compact high magnetic field device aimed at studying
high density plasmas in conditions close to those foreseen on ITER. An
internal transport barrier lasting several confinement times has been
obtained in 5.5 T/0.5 MA discharges with LHCD plus off-axis ECRH on the
current ramp. Central temperatures of about 11 keV were achieved at ITER
like central density values. Radiative improved mode studies show an
increase in the energy confinement time following Ne injection with the
radiated fraction reaching 90%. Operation with full LHCD at high density
and current have been obtained with the LH system working close to the
nominal performance. Steady and modulated ECRH transport studies confirm
previous findings that the electron temperature profile is stiff if the
magnetic shear is finite. High performance, steady PEP modes have been
extensively studied. Careful timing of the pellet sequence allowed a high
degree of reproducibility. Synergy studies with LH and EC waves injection
have been performed both in the upshifted and downshifted scheme in which
the EC waves are absorbed by the LHCD generated fast electrons, showing an
increase in the current drive efficiency.
IAEA 2003