Full Paper
Contents  Return  Previous Page  Next Page  Index

Return To: Session IF - Inertial Fusion
Prev Page: (IF-5) Fundamental Issues in Fast Ignition Physics: from
Next Page: (IF-D) Discussion of Session IF

(IF-6) Advances in Radiation-Hydrodynamics and Atomic Physics Simulation for Current and New Neutron-less Targets

G. Velarde1), E. Minguez1), E. Bravo4), S. Eliezer5), J.M. Gil3), P.T. León1), P. Martel3), J.M. Martinez-Val1), F. Ogando1)2), M. Piera1)2), A. Relaño4), R. Rodriguez3), J.G. Rubiano3), P. Sauvan1), D.G. Senz4), P. Velarde1)
1) Instituto Fusión Nuclear (DENIM) / ETSII / Universidad Politécnica Madrid, Madrid, Spain
2) UNED, Spain
3) Universidad Las Palmas de Gran Canaria, Spain
4) Universidad Politécnica de Catalunya, Spain
5) Soreq NRC, Tel-Aviv, Israel

Abstract.  We study with ARWEN code a target design for ICF based on jet production. ARWEN is 2D Adaptive Mesh Refinement fluid dynamic and multigroup radiation transport. We are designing, by using also ARWEN, a target for laboratory simulation of astrophysical phenomena. We feature an experimental device to reproduce collisions of two shock waves, scaled to roughly represent cosmic supernova remnants. ANALOP code uses parametric potentials fitting to self-consistent potentials, it includes temperature and density effects by linearized Debye-Hückel and it treats excited configurations and H+He-like lines. Other is an average SHM using the parametric potentials above described. H-like emissivities and opacities have been simulated, using both, for Al and F plasmas with density 1023cm- 3 and temperatures higher than 200 eV. Advanced fusion cycles, as the aneutronic proton-boron 11 reaction, require very high ignition temperatures. Plasma conditions for a fusion-burning wave to propagate at such temperatures are rather extreme and complex, because of the overlapping effects of the main energy transport mechanisms. Calculations on the most appropriate ICF regimes for this purpose are presented.

Read the full paper in PDF format.

IAEA 2003