(OV/1-6) Recent Advance in LHD Experiment
O. Motojima1),
N. Ohyabu1),
A. Komori1),
O. Kaneko1),
H. Yamada1),
K. Kawahata1),
Y. Nakamura1),
K. Ida1),
T. Akiyama2),
N. Ashikawa1),
W.A. Cooper3),
A. Ejiri4),
M. Emoto1),
N. Ezumi5),
H. Funaba1),
A. Fukuyama6),
P. Goncharov7),
M. Goto1),
H. Idei1),
K. Ikeda1),
S. Inagaki1),
M. Isobe1),
S. Kado8),
H. Kawazome6),
K. Khlopenkov1),
T. Kobuchi1),
K. Kondo6),
A. Kostrioukov1),
S. Kubo1),
R. Kumazawa1),
Y. Liang1),
J.F. Lyon9),
A. Mase10),
S. Masuzaki1),
T. Minami1),
J. Miyazawa1),
T. Morisaki1),
S. Morita1),
S. Murakami1),
S. Muto1),
T. Mutoh1),
K. Nagaoka1),
Y. Nagayama1),
N. Nakajima1),
K. Nakamura11),
H. Nakanishi1),
K. Narihara1),
Y. Narushima1),
K. Nishimura1),
N. Nishino12),
N. Noda1),
T. Notake13),
H. Nozato4),
S. Ohdachi1),
Y. Oka1),
H. Okada6),
S. Okamura1),
M. Osakabe1),
T. Ozaki1),
B.J. Peterson1),
A. Sagara1),
T. Saida7),
K. Saito1),
S. Sakakibara1),
M. Sakamoto11),
R. Sakamoto1),
M. Sasao1),
K. Sato1),
M. Sato1),
T. Seki1),
T. Shimozuma1),
M. Shoji1),
H. Suzuki1),
Y. Takeiri1),
N. Takeuchi13),
N. Tamura1),
K. Tanaka1),
M.Y. Tanaka1),
Y. Teramachi14),
K. Toi1),
T. Tokuzawa1),
Y. Tomota15),
Y. Torii13),
K. Tsumori1),
K.Y. Watanabe1),
T. Watari1),
Y. Xu1),
I. Yamada1),
S. Yamamoto13),
T. Yamamoto13),
M. Yokoyama1),
S. Yoshimura1),
Y. Yoshimura1),
M. Yoshinuma1),
N. Asakura16),
T. Fujita16),
T. Fukuda16),
T. Hatae16),
S. Higashijima16),
A. Isayama16),
Y. Kamada16),
H. Kubo16),
Y. Kusama16),
Y. Miura16),
T. Nakano16),
H. Ninomiya16),
T. Oikawa16),
N. Oyama16),
Y. Sakamoto16),
K. Shinohara16),
T. Suzuki16),
H. Takenaga16),
K. Ushigusa16),
T. Hino17),
M. Ichimura18),
Y. Takase4),
F. Sano6),
H. Zushi11),
T. Satow1),
S. Imagawa1),
T. Mito1),
I. Ohtake1),
T. Uda1),
K. Itoh1),
K. Ohkubo1),
S. Sudo1),
K. Yamazaki1),
K. Matsuoka1),
Y. Hamada1),
M. Fujiwara1)
1) National Institute for Fusion Science, Toki, Japan
2) Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Japan
3) CRPP, EPFL), Lausanne, Switzerland
4) Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
5) Nagano National College of Technology, Nagono, Japan
6) Graduate School of Energy Science, Kyoto University, Uji, Japan
7) Department of Fusion Science, School of Mathematical and Physical Science,
Graduate University for Advanced Studies, Hayama, Japan
8) High Temperature Plasma Center, The Univ. of Tokyo, Tokyo, Japan
9) Oak Ridge National Laboratory, Tennessee, USA
10) Advanced Science and Technology Center for Cooperative Research, Kyushu Univ. Japan
11) Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan
12) Faculty of Engineering, Hiroshima Univ., Hiroshima, Japan
13) Department of Energy Engineering and Science, Nagoya University, Nagoya, Japan
14) The Polytechnic University, Japan
15) Department of Engineering, Ibaraki Univ. Japan
16) Naka Fusion Research Institute, JAERI, Japan
17) Faculty of Engineering, Hokkaido University, Sapporo, Japan
18) University of Tsukuba, Tsukuba, Japan
Abstract. Steady progress has been made in the first four years of the LHD
experiment. High performance has been realized in the inward shifted
configuration (
Rax = 3.6 m), which has good orbit properties. The
energy confinement is found to be 50 % higher than that predicted by the
ISS95 Scaling and the enhancement is attributed to formation of a
temperature profile with high edge temperature. We have achieved the maximum
stored energy of 1.1 MJ. Despite its magnetic hill geometry, an average beta
of 3.2 % was achieved without any significant deterioration of the
confinement due to MHD plasma activity. Good confinement of helically
trapped high energy particles appears to lead to successful ICRF minority
heating. When a certain level of ECRH power is added in the core of the low
density discharges, improvement of core electron confinement (ITB) and hence
high central electron temperature as high as 10 keV are clearly observed. In
the core, positive radial electric field is observed, suggesting a critical
role of the electric field in the ITB formation. The island (
n/m = 1/1)
generated by external error fields is found to shrink significantly due to
the plasma effect of low collisionality.
IAEA 2003