(EX/P2-19) ICRF Heating and High Energy Particle Production in the Large Helical Device
T. Mutoh1),
R. Kumazawa1),
T. Seki1),
K. Saito1),
T. Watari1),
Y. Torii2),
N. Takeuchi2),
T. Yamamoto2),
M. Osakabe1),
M. Sasao1),
S. Murakami1),
T. Ozaki1),
T. Saida3),
Y.P. Zhao4),
H. Okada5),
Y. Takase6),
A. Fukuyama5),
N. Ashikawa1),
M. Emoto1),
H. Funaba1),
P. Goncharov3),
M. Goto1),
K. Ida1),
H. Idei1),
K. Ikeda1),
S. Inagaki1),
M. Isobe1),
O. Kaneko1),
K. Kawahata1),
K. Khlopenkov1),
T. Kobuchi1),
A. Komori1),
A. Kostrioukov1),
S. Kubo1),
Y. Liang1),
S. Masuzaki1),
T. Minami1),
T. Mito1),
J. Miyazawa1),
T. Morisaki1),
S. Morita1),
S. Muto1),
Y. Nagayama1),
Y. Nakamura1),
H. Nakanishi1),
K. Narihara1),
Y. Narushima1),
K. Nishimura1),
N. Noda1),
T. Notake2),
S. Ohdachi1),
I. Ohtake1),
N. Ohyabu1),
Y. Oka1),
B.J. Peterson1),
A. Sagara1),
S. Sakakibara1),
R. Sakamoto1),
M. Sasao1),
K. Sato1),
M. Sato1),
T. Shimozuma1),
M. Shoji1),
H. Suzuki1),
Y. Takeiri1),
N. Tamura1),
K. Tanaka1),
K. Toi1),
T. Tokuzawa1),
K. Tsumori1),
K.Y. Watanabe1),
Y. Xu1),
H. Yamada1),
I. Yamada1),
S. Yamamoto2),
M. Yokoyama1),
Y. Yoshimura1),
M. Yoshinuma1),
K. Itoh1),
K. Ohkubo1),
T. Satow1),
S. Sudo1),
T. Uda1),
K. Yamazaki1),
K. Matsuoka1),
O. Motojima1),
Y. Hamada1),
M. Fujiwara1)
1) National Institute for Fusion Science, Toki, Japan
2) Department of Energy Engineering and Science, Nagoya University, Japan
3) Graduate University for Advanced Studies, Hayama, Japan
4) Institute of Plasma Physics, Academia Scinica, Hefei, Anhui, China
5) Kyoto University, Kyoto, Japan
6) Graduate School of Frontier Sciences, The University of Tokyo, Japan
Abstract. Significant progress has been made with the ICRF heating in the
Large Helical Device (LHD). This is mainly due to better confinement of the
helically trapped particles, and less accumulation of impurities in the
region of the core plasma. During the past two years, the ICRF heating power
was increased from 1.35 MW to 2.7 MW. Various wave-mode tests were carried
out using minority-ion heating, second-harmonic heating, slow-wave heating,
and high-density fast-wave heating with fundamental cyclotron frequency. The
minority-ion heating mode had the best performance and the stored energy
reached 240 kJ by using ICRF alone. This was obtained at the inward-shifted
magnetic axis configuration. This improvement associated with axis shift was
common to bulk plasma and highly accelerated particles. In the minority-ion
mode, high-energy ions up to 500 keV were observed by concentrating the
heating power near plasma axis. The impurity problem was not serious when
the scrape-off layer was sufficiently far from the chamber wall. Solving the
impurity problem, it was enabled to sustain the plasma for more than two
minutes by ICRF alone.
IAEA 2003