Full Paper
IAEA-CN77
Contents  Return  Previous Page  Next Page  Index


Return To: Session EX/P2 - JT-60U, LHD, JFT-2M, NSTX, Gamma-10,
Prev Page: (EX/P2-18) Study on Ion Temperature Behaviors in Electron
Next Page: (EX/P2-20) Predictive Study on High Performance Modes of


(EX/P2-19) ICRF Heating and High Energy Particle Production in the Large Helical Device

T. Mutoh1), R. Kumazawa1), T. Seki1), K. Saito1), T. Watari1), Y. Torii2), N. Takeuchi2), T. Yamamoto2), M. Osakabe1), M. Sasao1), S. Murakami1), T. Ozaki1), T. Saida3), Y.P. Zhao4), H. Okada5), Y. Takase6), A. Fukuyama5), N. Ashikawa1), M. Emoto1), H. Funaba1), P. Goncharov3), M. Goto1), K. Ida1), H. Idei1), K. Ikeda1), S. Inagaki1), M. Isobe1), O. Kaneko1), K. Kawahata1), K. Khlopenkov1), T. Kobuchi1), A. Komori1), A. Kostrioukov1), S. Kubo1), Y. Liang1), S. Masuzaki1), T. Minami1), T. Mito1), J. Miyazawa1), T. Morisaki1), S. Morita1), S. Muto1), Y. Nagayama1), Y. Nakamura1), H. Nakanishi1), K. Narihara1), Y. Narushima1), K. Nishimura1), N. Noda1), T. Notake2), S. Ohdachi1), I. Ohtake1), N. Ohyabu1), Y. Oka1), B.J. Peterson1), A. Sagara1), S. Sakakibara1), R. Sakamoto1), M. Sasao1), K. Sato1), M. Sato1), T. Shimozuma1), M. Shoji1), H. Suzuki1), Y. Takeiri1), N. Tamura1), K. Tanaka1), K. Toi1), T. Tokuzawa1), K. Tsumori1), K.Y. Watanabe1), Y. Xu1), H. Yamada1), I. Yamada1), S. Yamamoto2), M. Yokoyama1), Y. Yoshimura1), M. Yoshinuma1), K. Itoh1), K. Ohkubo1), T. Satow1), S. Sudo1), T. Uda1), K. Yamazaki1), K. Matsuoka1), O. Motojima1), Y. Hamada1), M. Fujiwara1)
 
1) National Institute for Fusion Science, Toki, Japan
2) Department of Energy Engineering and Science, Nagoya University, Japan
3) Graduate University for Advanced Studies, Hayama, Japan
4) Institute of Plasma Physics, Academia Scinica, Hefei, Anhui, China
5) Kyoto University, Kyoto, Japan
6) Graduate School of Frontier Sciences, The University of Tokyo, Japan

Abstract.  Significant progress has been made with the ICRF heating in the Large Helical Device (LHD). This is mainly due to better confinement of the helically trapped particles, and less accumulation of impurities in the region of the core plasma. During the past two years, the ICRF heating power was increased from 1.35 MW to 2.7 MW. Various wave-mode tests were carried out using minority-ion heating, second-harmonic heating, slow-wave heating, and high-density fast-wave heating with fundamental cyclotron frequency. The minority-ion heating mode had the best performance and the stored energy reached 240 kJ by using ICRF alone. This was obtained at the inward-shifted magnetic axis configuration. This improvement associated with axis shift was common to bulk plasma and highly accelerated particles. In the minority-ion mode, high-energy ions up to 500 keV were observed by concentrating the heating power near plasma axis. The impurity problem was not serious when the scrape-off layer was sufficiently far from the chamber wall. Solving the impurity problem, it was enabled to sustain the plasma for more than two minutes by ICRF alone.

Read the full paper in PDF format.

IAEA 2003