Full Paper
Contents  Return  Previous Page  Next Page  Index

Return To: Session EX/P2 - JT-60U, LHD, JFT-2M, NSTX, Gamma-10,
Prev Page: (EX/P2-17) Behavior of Plasma Facing Surface in the
Next Page: (EX/P2-19) ICRF Heating and High Energy Particle Production

(EX/P2-18) Study on Ion Temperature Behaviors in Electron and Ion Heating Regimes of ECH, ICRF and NBI Discharges in LHD

S. Morita1), M. Goto1), Y. Takeiri1), J. Miyazawa1), S. Murakami1), K. Narihara1), M. Osakabe1), T. Akiyama2), N. Ashikawa1), M. Emoto1), M. Fujiwara1), H. Funaba1), P. Goncharov3), Y. Hamada1), K. Ida1), H. Idei1), T. Ido1), K. Ikeda1), S. Inagaki1), M. Isobe1), K. Itoh1), O. Kaneko1), K. Kawahata1), H. Kawazome4), K. Khlopenkov1), T. Kobuchi1), A. Komori1), A. Kostrioukov1), S. Kubo1), R. Kumazawa1), Y. Liang1), S. Masuzaki1), K. Matsuoka1), T. Minami1), T. Morisaki1), O. Motojima1), S. Muto1), T. Mutoh1), Y. Nagayama1), Y. Nakamura1), H. Nakanishi1), Y. Narushima1), K. Nishimura1), A. Nishizawa1), N. Noda1), T. Notake5), H. Nozato6), S. Ohdachi1), K. Ohkubo1), N. Ohyabu1), Y. Oka1), T. Ozaki1), B.J. Peterson1), A. Sagara1), T. Saida3), K. Saito1), S. Sakakibara1), R. Sakamoto1), M. Sasao1), K. Sato1), M. Sato1), T. Satow1), T. Seki1), T. Shimozuma1), M. Shoji1), S. Sudo1), H. Suzuki1), N. Takeuchi5), N. Tamura1), K. Tanaka1), K. Toi1), T. Tokuzawa1), Y. Torii5), K. Tsumori1), T. Uda1), K.Y. Watanabe1), T. Watari1), Y. Xu1), H. Yamada1), I. Yamada1), S. Yamamoto5), T. Yamamoto5), K. Yamazaki1), M. Yokoyama1), Y. Yoshimura1), M. Yoshinuma1)
1) National Institute for Fusion Science, Toki, Japan
2) Research Laboratory for Nuclear Reactors, Tokyo, Institute of Technology, Tokyo, Japan
3) Department of Fusion Science, School of Mathematical and Physical Science, Graduate University for Advanced Studies, Hayama, Japan
4) Graduate School of Energy Science, Kyoto University, Uji, Japan
5) Department of Energy Engineering and Science, Nagoya University, Japan
6) Graduate School of Frontier Sciences, The University of Tokyo, Japan

Abstract.  Experiments in helical devices have been limited so far only in electron heating regime ( Pi $ \leq$ Pe). The heating experiments have been extensively done in LHD in order to realize ion heating regime ( Pi > Pe) and obtain higher Ti in addition to understanding of the heating mechanism. In off-axis ECH heating Ti is much lower than Te at low-density and becomes equal at ne = 1013cm- 3. The ion heating in NBI H2 discharges is entirely inefficient, since the input power greater than 70% is absorbed by electrons ( Pi $ \leq$ Pe, Pi/ni $ \leq$ Pe/ne) because of the high beam energy of 160 keV. In ICRF heating a new operational range of Ti > Te was established with successfully performed ion heating regime ( Pi > Pe, Pi/ni > Pe/ne) and a comparison with ISS-95 scaling suggested an improvement of heating efficiency of 60%. Neon discharges were tried using NBI. Pure neon discharges were successfully obtained with the highest Ti of 5 keV and achievement of Ti > Te. Reasons are discussed. All Ti data were analyzed as a function of Pi/ni. Results indicated a smooth rise with increasing Pi/ni and suggested an importance of the direct power input to bulk ions with revealing the good heating efficiency of the ICRF discharges.

Read the full paper in PDF format.

IAEA 2003