UNITED STATES OF AMERICA

(Updated 2022)

PREAMBLE AND SUMMARY

This report provides information on the status and development of the nuclear power programme in the United States of America (USA), including factors related to the effective planning, decision making, and implementation of the nuclear power programme that together lead to safe and economical operations of nuclear power plants.

The CNPP summarizes organisational and industrial aspects of the nuclear power programme and provides information about the relevant legislative, regulatory, and international framework in the USA.

The USA has 93 operating nuclear power reactors that in 2021 produced 778.2 terawatt-hours (TW·h) of electricity or nearly 20% of total electricity production. Nuclear generation provides 52% of America’s clean electricity which the Government identified as a vital resource to achieve net-zero emissions economy-wide by 2050.

1. COUNTRY ENERGY OVERVIEW

1.1. ENERGY INFORMATION

Energy statistics, projections and analyses are produced by the US Energy Information Administration (EIA), which is the research agency within the United States Department of Energy (DOE). EIA collects, analyses, and disseminates independent and impartial energy information to promote sound policy making, efficient markets, and public understanding about energy and its interaction with the economy and the environment. EIA is America’s premier source of energy information and, by law, its data, analyses and forecasts are independent of approval by any other officer or employee of the Government. A complete list of reports and publications that EIA produces is available at www.eia.gov/reports.

1.1.1. Energy policy

The overall direction of the energy sector is determined largely by market forces rather than by formal government policy. However, federal policies and regulations do influence specific aspects of energy production and transmission, including, but not limited to, air and water quality, interstate commerce, mine safety, leasing of federal lands, support for research and development (R&D) activities, investment incentives, income taxes, tax incentives, nuclear licensing and nuclear safety oversight. In 2021 the US Congress and President enacted the Bipartisan Infrastructure Law which includes more than US $62 billion for the DOE.

In addition to the federal role, state agencies formulate policies and issue regulations affecting the energy sector within each state. State involvement is generally related to air and water quality, mine safety and permitting, severance or other taxes, tax incentives, clean energy standards and renewable portfolio standards. States may regulate the electric power sector through public utility commissions and associated integrated resource planning processes and rate setting procedures.

1.1.2. Estimated available energy

In 2020, estimated recoverable coal reserves were 228 196 million tonnes. Total natural gas proved reserves were 13 394 billion m3 and proved crude oil and lease condensate reserves were 5 210 million metric tonnes (see Table 1).

TABLE 1. ESTIMATED AVAILABLE ENERGY RESERVES

  Fossil fuels Nuclear Renewables
Solid Liquid Gas Uranium Hydro Other renewable
Total amount 228 196 5 210 13 394 n.a* n.a. n.a.
Total amount in exajoules (EJ) n.a. n.a. n.a. n.a. n.a. n.a.

Sources: EIA Coal Annual and US Crude Oil and Natural Gas Proved Reserves, Year-end 2020

*US uranium production data withheld for 2021.

1.1.3. Energy Consumption Statistics

Statistical data on energy and electricity supply and demand between 1970 and 2019 illustrate long term trends in production and consumption (Table 2). Total energy production and exports increased in recent years, from 2010 to 2019.

TABLE 2. ENERGY CONSUMPTION

Final Energy consumption [PJ] 2000 2005 2010 2015 2020 Compound
annual growth
rate 2000–2020 (%)
Total 64 333 65 016 62 767 62 567 59 337 -0.40
Coal, Lignate and Peat 1 688 1 571 1 300 990 707 -4.26
Oil 33 165 35 213 31 849 31 013 27 332 -0.96
Natural gas 14 417 12 336 12 790 13 330 14 263 -0.05
Bioenergy and Waste 2 180 2 259 2 842 3 308 3 408 2.26
Electricity 12 580 13 414 13 618 13 591 13 244 0.26
Heat 303 223 368 335 384 1.19

*Latest available data, please note that compound annual growth rate may not be representative of actual average growth.

**Total energy derived from primary and secondary generation sources. Figures do not reflect potential heat output that may result from electricity co-generation.

—: data not available.

Source(s): United Nations Statistical Division, OECD/IEA and IAEA RDS-1

1.2. THE ELECTRICITY SYSTEM

The US electric power sector is a complex market involving firms that generate, transmit, and distribute electricity through intricate infrastructure networks involving a large number of participants. The electric power industry is the backbone of US economic sectors, supplying energy for transport, water, emergency services, telecommunications, and manufacturing.

1.2.1. Electricity system and decision making process

The US electric utility industry is regulated at federal and state levels. Several pieces of legislation were enacted to address national policies, end user needs and environmental protection. Legislation also forms the basis for federal regulation of transmission and wholesale electric power transactions. Section 3.2 contains a list of relevant electricity and nuclear power legislation.

1.2.2. Structure of the electric power sector

The electricity sector consists of regulated and unregulated markets. Some states have regulated markets in which generation, transmission and distribution of electric power are provided by a single utility. Other states have unbundled generation, transmission and distribution to allow for competitive wholesale and retail power market participation.

The structure of the US electric power sector consists of four main components: generation, transmission, distribution, and end users. The role of each component differs by state and region. Interstate electricity trade does occur; however, no single system or market structure dominates another. Most end users receive electricity from centralized power plants that use a variety of fuels to generate electricity. The largest sources of electricity generation are coal, natural gas, and nuclear power.

The electric power sector consists of a variety of participants, including: public, private, and cooperative utilities; independent power producers; three regional synchronized power grids; eight electric reliability councils; and thousands of separate engineering, economic, environmental and land use regulatory authorities. Market participants include the following:

  • Investor owned utilities (IOUs): Large private companies financed by a combination of shareholder equity and bondholder debt governed by state regulatory authorities that set rates of recovery for ratepayers. Several IOUs have multi-fuel generators and multistate operations.

  • Publicly owned utilities (POUs): Government or municipally owned utilities that are generally exempt from regulation by state regulatory commissions. POUs have an obligation to consider end user interests when setting rates and service standards.

  • Independent power producers (IPPs): Generate electricity from a portfolio of power plants and do not provide local distribution services or retail sales to end users. Although an IPP may sell its power through brokers, it can also sell directly to the utilities and marketers. IPPs generally operate in the unregulated electricity markets.

  • Cooperative utilities: Owned by their end users and governed by a board of directors elected from the membership that sets the policies and procedures for the utility. Cooperative utilities are typically established in rural parts of the country where the end user base is small.

  • Power marketing agencies: Federal entities that market wholesale power. Some agencies may also own power plants.

  • Wholesale power suppliers: Do not own individual plants. These suppliers buy power from multiple suppliers on a long term or spot market basis and then resell it. Brokers may be used to facilitate these transactions.

  • Retail power marketers: Buy and sell electricity, but usually do not own or operate generation facilities. Electricity is sold directly to end users, such as households and small to medium sized commercial enterprises.

The power grid consists of three large, interconnected systems that synchronously move electricity around the lower 48 contiguous states: the Eastern Interconnection, the Western Interconnection and the Texas Interconnected System. In general, these systems operate independently, with some limited electrical interconnection points. The Eastern Interconnection is the largest interconnected grid in the USA, connecting 39 states, the District of Columbia and much of Canada (Fig. 1).

Source: North American Electric Reliability Corporation.

FIG. 1. Map of North American electricity grid interconnections.

Electrical transmission grids are coordinated, controlled and monitored by electrical transmission system operators, which are traditionally non-profit organizations. Transmission line owners are required to supply transmission access to all electricity generators and wholesale energy customers in the service operator’s area under standardized, open access tariff rates.

Electrical transmission system operators may be either independent system operators (ISOs), which can operate within a single state or across multiple states, or regional transmission organizations (RTOs) that cover wider areas crossing state lines. An ISO operates the region’s electricity grid, administers the region’s wholesale electricity markets and provides reliability planning for the region’s bulk electricity system.

RTOs perform the same functions as ISOs, but have greater responsibility for the transmission network, as established by the Federal Energy Regulatory Commission (FERC). RTOs coordinate, control and monitor the operation of the electric power system within their territories. RTOs also monitor the operation of the region’s transmission network by providing fair transmission access. In addition, ISOs/RTOs engage in regional planning to make sure the needs of the system are met with the appropriate infrastructure (Fig. 2).

Sources: EIA, FERC, North American Electric Reliability Corporation.

FIG. 2. Map US wholesale electricity markets, ISOs and RTOs.

1.2.3. Main indicators

TABLE 3. ELECTRICITY PRODUCTION

Electricity production (GWh) 2000 2005 2010 2015 2020 Compound
annual growth
rate 2000–2020 (%)
Total 4 052 667 4 294 368 4 378 430 4 317 159 4 265 397 0.26
Coal, Lignate and Peat 2 129 498 2 153 956 1 994 194 1 470 997 857 660 -4.45
Oil 118 482 141 290 48 086 38 837 33 757 -6.08
Natural gas 634 290 782 829 1 017 869 1 372 570 1 682 341 5.00
Bioenergy and Waste 71 713 71 215 72 606 80 466 65 881 -0.42
Hydro 279 986 297 926 286 333 271 129 314 252 0.58
Nuclear 797 718 810 726 838 931 830 288 823 023 0.16
Wind 5 650 17 881 95 148 192 992 340 154 22.74
Solar 709 1 120 3 942 35 635 123 162 29.42
Geothermal 14 621 16 778 17 577 18 727 20 093 1.60
Other 0 647 3 744 5 518 5 074 0.00

*Latest available data, please note that compound annual growth rate may not be representative of actual average growth.

**Electricity transmission losses are not deducted.

—: data not available.

Source: United Nations Statistical Division, OECD/IEA and IAEA RDS-1

TABLE 4. ENERGY RELATED RATIOS

Final Energy consumption [PJ] 2000 2005 2010 2015 2020 2021*
Nuclear/total electricity (%) 19.8 19.3 19.6 19.5 19.7 19.6

*Latest available data.

Source: RDS-1 and RDS-2

—: data not available.

2. NUCLEAR POWER SITUATION

2.1. HISTORICAL DEVELOPMENT AND CURRENT ORGANIZATIONAL STRUCTURE

2.1.1. Overview

The Atomic Energy Act of 1954 assigned the Atomic Energy Commission (AEC) the responsibility to explore the peaceful use of nuclear energy. The responsibilities of the AEC were both regulatory and developmental. Numerous joint industry–government groups were established to explore reactor design concepts, and in 1957, the first large scale civilian nuclear power plant in the USA began operation in Shippingport, Pennsylvania. In 1960, the Dresden Nuclear Generating Station, in Grundy County, Illinois, became the nation’s first full scale, privately financed commercial nuclear power plant.

Congress abolished the AEC in 1974 through the Energy Reorganization Act of 1974, in order to assign regulatory and energy development responsibilities to separate agencies. Under the Energy Reorganization Act of 1974, the Nuclear Regulatory Commission (NRC) and the Energy Research and Development Administration (ERDA) were established. The NRC was established to serve as the independent regulatory authority tasked with assuring the safety and licensing of nuclear reactors and other facilities associated with the processing, transport and handling of nuclear materials.

In 1977, the Department of Energy Organization Act was signed; ERDA was abolished, and the DOE was established to consolidate most federal energy activities under one department and thereby provide the framework for a comprehensive and balanced national energy plan.

The nuclear power industry grew dramatically during the 1960s and 1970s in response to strong electricity demand growth. During this period, the USA added 50 GW(e) of nuclear capacity. The capacity of nuclear units grew significantly during the 1970s and 1980s as utilities hoped to capture economies of scale. The nuclear industry ramped up the size of planned nuclear power units rapidly after the first round of commercial reactors.

Watts Bar Unit 2 is the newest commercial nuclear reactor in the US fleet. The 1150 MW(e) reactor was completed in 2016 and is an expansion of the Watts Bar Nuclear Plant in Spring City, Tennessee. The dual unit facility is owned and operated by the Tennessee Valley Authority (TVA). Construction began on the unit in 1973, but was suspended in 1985 as a result of slower electricity demand growth, rising construction costs, and new regulatory requirements stemming from the accident at Three Mile Island in 1979.

Construction on the Virgil C. Summer plant expansion project near Jenkinsville, South Carolina, was cancelled in 2017 as the result of construction delays and cost overruns. The utility, South Carolina Electric & Gas Company, determined that construction would not be completed before 2021 and could have a total cost of US $25 billion, compared to the original budget estimate of US $11.5 billion.

The Alvin W. Vogtle nuclear plant in Waynesboro, Georgia is continuing its expansion, which will add two Westinghouse advanced passive (AP1000) pressurized water reactors (PWRs), each with a capacity of approximately 1100 MW(e). The project is in the advance stages of construction and Units 3 and 4 are expected to be completed in 2022 and 2023, respectively. Vogtle currently has two operating reactors with a capacity of approximately 1150 MW(e) each. Units 1 and 2 both began construction in 1976 and were respectively completed in 1987 and 1989.

In 2018, the NRC issued combined licences (COLs) to Florida Power & Light (FPL) for two Westinghouse AP1000 PWRs designated as Turkey Point, Units 6 and 7. Before making the decision to begin construction, FPL will monitor the progress and completion of the ongoing Vogtle expansion project. Turkey Point is located in Homestead, Florida, 25 miles south of Miami, has two operating 800 MW(e) reactors built in the 1970s, and also includes three natural gas fired units.

2.1.2. Current organizational structure

The NRC is part of the executive branch of the federal Government and is the principal regulator of the nuclear power industry. The NRC is headed by five commissioners, who, along with the executive director for operations, formulate policies, develop regulations governing nuclear reactor and nuclear materials safety, issue orders for licences and adjudicate legal matters (Fig. 3).

Source: NRC.

FIG. 3. US Nuclear Regulatory Commission organizational chart.

The NRC leads consultations in cooperation with other government entities such as the Environmental Protection Agency (EPA), the Department of Transportation (DOT), the Occupational Safety and Health Administration (OSHA) and the Federal Emergency Management Agency (FEMA) to regulate nuclear safety standards and norms.

2.2. NUCLEAR POWER PLANTS: OVERVIEW

2.2.1. Status and performance of nuclear power plants

The US nuclear power industry is the largest in the world, with 93 operating commercial nuclear reactors, which have a total capacity of 95 523 MW (Table 5). Most nuclear facilities are located in the central to eastern part of the USA (see Fig. 4). In 2021, nuclear power plants produced 778.2 TW·h of electricity, accounting for nearly 20% of total US electricity generation. The 2020 the weighted average unit capability factor for the US nuclear fleet was 82.7% compared with a global median of 77.7%.

Source: US Nuclear Regulatory Commission

Fig. 4. US Operating Commercial Nuclear Power Reactors, 2021

TABLE 5. STATUS AND PERFORMANCE OF NUCLEAR POWER PLANTS

Reactor Unit Type Net
Capacity
[MW(e)]
Status Operator Reactor
Supplier
Construction
Date
First
Criticality
Date
First Grid
Date
Commercial
Date
Shutdown
Date
UCF
for
2021
ANO-1 PWR 836 Operational ENTERGY B&W 01/10/1968 06/08/1974 17/08/1974 19/12/1974 90.1
ANO-2 PWR 988 Operational ENTERGY CE 06/12/1968 05/12/1978 26/12/1978 26/03/1980 82.2
BEAVER VALLEY-1 PWR 908 Operational FENOC WH 26/06/1970 10/05/1976 14/06/1976 01/10/1976 91.6
BEAVER VALLEY-2 PWR 905 Operational FENOC WH 03/05/1974 04/08/1987 17/08/1987 17/11/1987 88.9
BRAIDWOOD-1 PWR 1194 Operational EXELON WH 01/08/1975 29/05/1987 12/07/1987 29/07/1988 94.3
BRAIDWOOD-2 PWR 1160 Operational EXELON WH 01/08/1975 08/03/1988 25/05/1988 17/10/1988 95.0
BROWNS FERRY-1 BWR 1200 Operational TVA GE 01/05/1967 17/08/1973 15/10/1973 20/12/1974 100.0
BROWNS FERRY-2 BWR 1200 Operational TVA GE 01/05/1967 20/07/1974 28/08/1974 01/03/1975 84.9
BROWNS FERRY-3 BWR 1210 Operational TVA GE 01/07/1968 08/08/1976 12/09/1976 01/03/1977 01/07/2036 100.0
BRUNSWICK-1 BWR 938 Operational PROGRESS GE 07/02/1970 08/10/1976 04/12/1976 18/03/1977 96.4
BRUNSWICK-2 BWR 932 Operational PROGRESS GE 07/02/1970 20/03/1975 29/04/1975 03/11/1975 91.7
BYRON-1 PWR 1164 Operational EXELON WH 01/04/1975 02/02/1985 01/03/1985 16/09/1985 94.9
BYRON-2 PWR 1136 Operational EXELON WH 01/04/1975 09/01/1987 06/02/1987 02/08/1987 100.0
CALLAWAY-1 PWR 1215 Operational AmerenUE WH 01/09/1975 02/10/1984 24/10/1984 19/12/1984 40.9
CALVERT CLIFFS-1 PWR 877 Operational EXELON CE 01/06/1968 07/10/1974 03/01/1975 08/05/1975 100.0
CALVERT CLIFFS-2 PWR 855 Operational EXELON CE 01/06/1968 30/11/1976 07/12/1976 01/04/1977 93.4
CATAWBA-1 PWR 1160 Operational DUKEENER WH 01/05/1974 07/01/1985 22/01/1985 29/06/1985 94.1
CATAWBA-2 PWR 1150 Operational DUKEENER WH 01/05/1974 08/05/1986 18/05/1986 19/08/1986 89.8
CLINTON-1 BWR 1062 Operational EXELON GE 01/10/1975 27/02/1987 24/04/1987 24/11/1987 91.3
COLUMBIA BWR 1131 Operational ENERGYNW GE 01/08/1972 19/01/1984 27/05/1984 13/12/1984 86.4
COMANCHE PEAK-1 PWR 1205 Operational LUMINANT WH 19/12/1974 03/04/1990 24/04/1990 13/08/1990 100.0
COMANCHE PEAK-2 PWR 1195 Operational LUMINANT WH 19/12/1974 24/03/1993 09/04/1993 03/08/1993 85.1
COOK-1 PWR 1030 Operational AEP WH 25/03/1969 18/01/1975 10/02/1975 28/08/1975 98.7
COOK-2 PWR 1168 Operational AEP WH 25/03/1969 10/03/1978 22/03/1978 01/07/1978 86.5
COOPER BWR 769 Operational ENTERGY GE 01/06/1968 21/02/1974 10/05/1974 01/07/1974 100.0
DAVIS BESSE-1 PWR 894 Operational FENOC B&W 01/09/1970 12/08/1977 28/08/1977 31/07/1978 99.1
DIABLO CANYON-1 PWR 1138 Operational PG&E WH 23/04/1968 29/04/1984 11/11/1984 07/05/1985 100.0
DIABLO CANYON-2 PWR 1118 Operational PG&E WH 09/12/1970 19/08/1985 20/10/1985 13/03/1986 70.3
DRESDEN-2 BWR 894 Operational EXELON GE 10/01/1966 07/01/1970 13/04/1970 09/06/1970 94.6
DRESDEN-3 BWR 879 Operational EXELON GE 14/10/1966 12/01/1971 22/07/1971 16/11/1971 94.6
FARLEY-1 PWR 874 Operational SOUTHERN WH 01/10/1970 09/08/1977 18/08/1977 01/12/1977 91.2
FARLEY-2 PWR 883 Operational SOUTHERN WH 01/10/1970 05/05/1981 25/05/1981 30/07/1981 100.0
FERMI-2 BWR 1115 Operational DTEDISON GE 26/09/1972 21/06/1985 21/09/1986 23/01/1988 97.9
FITZPATRICK BWR 813 Operational EXELON GE 01/09/1968 17/11/1974 01/02/1975 28/07/1975 100.0
GINNA PWR 560 Operational EXELON WH 25/04/1966 08/11/1969 02/12/1969 01/07/1970 94.5
GRAND GULF-1 BWR 1401 Operational ENTERGY GE 04/05/1974 18/08/1982 20/10/1984 01/07/1985 96.7
HARRIS-1 PWR 964 Operational PROGRESS WH 28/01/1978 03/01/1987 19/01/1987 02/05/1987 93.4
HATCH-1 BWR 876 Operational SOUTHERN GE 30/09/1968 12/09/1974 11/11/1974 31/12/1975 94.8
HATCH-2 BWR 883 Operational SOUTHERN GE 01/02/1972 04/07/1978 22/09/1978 05/09/1979 91.6
HOPE CREEK-1 BWR 1172 Operational PSEG GE 01/03/1976 28/06/1986 01/08/1986 20/12/1986 90.7
LASALLE-1 BWR 1137 Operational EXELON GE 10/09/1973 21/06/1982 04/09/1982 01/01/1984 100.0
LASALLE-2 BWR 1140 Operational EXELON GE 10/09/1973 10/03/1984 20/04/1984 19/10/1984 84.5
LIMERICK-1 BWR 1134 Operational EXELON GE 19/06/1974 22/12/1984 13/04/1985 01/02/1986 100.0
LIMERICK-2 BWR 1134 Operational EXELON GE 19/06/1974 12/08/1989 01/09/1989 08/01/1990 94.5
MCGUIRE-1 PWR 1158 Operational DUKEENER WH 01/04/1971 08/08/1981 12/09/1981 01/12/1981 100.0
MCGUIRE-2 PWR 1158 Operational DUKEENER WH 01/04/1971 08/05/1983 23/05/1983 01/03/1984 90.9
MILLSTONE-2 PWR 869 Operational DOMINION CE 01/11/1969 17/10/1975 09/11/1975 26/12/1975 91.4
MILLSTONE-3 PWR 1210 Operational DOMINION WH 09/08/1974 23/01/1986 12/02/1986 23/04/1986 96.6
MONTICELLO BWR 628 Operational NSP GE 19/06/1967 10/12/1970 05/03/1971 30/06/1971 90.9
NINE MILE POINT-1 BWR 613 Operational EXELON GE 12/04/1965 05/09/1969 09/11/1969 01/12/1969 94.5
NINE MILE POINT-2 BWR 1277 Operational EXELON GE 01/08/1975 23/05/1987 08/08/1987 11/03/1988 100.0
NORTH ANNA-1 PWR 948 Operational DOMINION WH 19/02/1971 05/04/1978 17/04/1978 06/06/1978 83.1
NORTH ANNA-2 PWR 944 Operational DOMINION WH 19/02/1971 12/06/1980 25/08/1980 14/12/1980 100.0
OCONEE-1 PWR 847 Operational DUKEENER B&W 06/11/1967 19/04/1973 06/05/1973 15/07/1973 100.0
OCONEE-2 PWR 848 Operational DUKEENER B&W 06/11/1967 11/11/1973 05/12/1973 09/09/1974 92.5
OCONEE-3 PWR 859 Operational DUKEENER B&W 06/11/1967 05/09/1974 18/09/1974 16/12/1974 100.0
PALO VERDE-1 PWR 1311 Operational APS CE 25/05/1976 25/05/1985 10/06/1985 28/01/1986 100.0
PALO VERDE-2 PWR 1314 Operational APS CE 01/06/1976 18/04/1986 20/05/1986 19/09/1986 89.1
PALO VERDE-3 PWR 1312 Operational APS CE 01/06/1976 25/10/1987 28/11/1987 08/01/1988 87.5
PEACH BOTTOM-2 BWR 1300 Operational EXELON GE 31/01/1968 16/09/1973 18/02/1974 05/07/1974 99.6
PEACH BOTTOM-3 BWR 1331 Operational EXELON GE 31/01/1968 07/08/1974 01/09/1974 23/12/1974 96.5
PERRY-1 BWR 1240 Operational FENOC GE 01/10/1974 06/06/1986 19/12/1986 18/11/1987 91.0
POINT BEACH-1 PWR 591 Operational NEXTERA WH 19/07/1967 02/11/1970 06/11/1970 21/12/1970 99.5
POINT BEACH-2 PWR 591 Operational NEXTERA WH 25/07/1968 30/05/1972 02/08/1972 01/10/1972 93.0
PRAIRIE ISLAND-1 PWR 522 Operational NSP WH 25/06/1968 01/12/1973 04/12/1973 16/12/1973 100.0
PRAIRIE ISLAND-2 PWR 519 Operational NSP WH 25/06/1969 17/12/1974 21/12/1974 21/12/1974 92.1
QUAD CITIES-1 BWR 908 Operational EXELON GE 15/02/1967 18/10/1971 12/04/1972 18/02/1973 95.4
QUAD CITIES-2 BWR 911 Operational EXELON GE 15/02/1967 26/04/1972 23/05/1972 10/03/1973 100.0
RIVER BEND-1 BWR 967 Operational ENTERGY GE 25/03/1977 31/10/1985 03/12/1985 16/06/1986 90.6
ROBINSON-2 PWR 741 Operational PROGRESS WH 13/04/1967 20/09/1970 26/09/1970 07/03/1971 95.8
SALEM-1 PWR 1169 Operational PSEG WH 25/09/1968 11/12/1976 25/12/1976 30/06/1977 100.0
SALEM-2 PWR 1158 Operational PSEG WH 25/09/1968 08/08/1980 03/06/1981 13/10/1981 88.6
SEABROOK-1 PWR 1246 Operational NEXTERA WH 07/07/1976 13/06/1989 29/05/1990 19/08/1990 90.5
SEQUOYAH-1 PWR 1152 Operational TVA WH 27/05/1970 05/07/1980 22/07/1980 01/07/1981 89.2
SEQUOYAH-2 PWR 1139 Operational TVA WH 27/05/1970 05/11/1981 23/12/1981 01/06/1982 89.4
SOUTH TEXAS-1 PWR 1280 Operational STP WH 22/12/1975 08/03/1988 30/03/1988 25/08/1988 90.4
SOUTH TEXAS-2 PWR 1280 Operational STP WH 22/12/1975 12/03/1989 11/04/1989 19/06/1989 91.6
ST. LUCIE-1 PWR 981 Operational FPL CE 01/07/1970 22/04/1976 07/05/1976 21/12/1976 89.2
ST. LUCIE-2 PWR 987 Operational FPL CE 02/06/1977 02/06/1983 13/06/1983 08/08/1983 90.1
SUMMER-1 PWR 973 Operational SCE&G WH 21/03/1973 22/10/1982 16/11/1982 01/01/1984 82.5
SURRY-1 PWR 838 Operational DOMINION WH 25/06/1968 01/07/1972 04/07/1972 22/12/1972 89.8
SURRY-2 PWR 838 Operational DOMINION WH 25/06/1968 07/03/1973 10/03/1973 01/05/1973 89.0
SUSQUEHANNA-1 BWR 1257 Operational PPL_SUSQ GE 02/11/1973 10/09/1982 16/11/1982 08/06/1983 96.9
SUSQUEHANNA-2 BWR 1257 Operational PPL_SUSQ GE 02/11/1973 08/05/1984 03/07/1984 12/02/1985 89.9
TURKEY POINT-3 PWR 837 Operational FPL WH 27/04/1967 20/10/1972 02/11/1972 14/12/1972 86.6
TURKEY POINT-4 PWR 821 Operational FPL WH 27/04/1967 11/06/1973 21/06/1973 07/09/1973 100.0
VOGTLE-1 PWR 1150 Operational SOUTHERN WH 01/08/1976 09/03/1987 27/03/1987 01/06/1987 93.1
VOGTLE-2 PWR 1152 Operational SOUTHERN WH 01/08/1976 28/03/1989 10/04/1989 20/05/1989 100.0
WATERFORD-3 PWR 1168 Operational ENTERGY CE 14/11/1974 04/03/1985 18/03/1985 24/09/1985 96.4
WATTS BAR-1 PWR 1157 Operational TVA WH 20/07/1973 01/01/1996 06/02/1996 27/05/1996 90.2
WATTS BAR-2 PWR 1164 Operational TVA WH 01/09/1973 23/05/2016 03/06/2016 19/10/2016 93.9
WOLF CREEK PWR 1200 Operational WCNOC WH 31/05/1977 22/05/1985 12/06/1985 03/09/1985 83.0
VOGTLE-3 PWR 1117 Under Construction SOUTHERN WH 12/03/2013
VOGTLE-4 PWR 1117 Under Construction SOUTHERN WH 19/11/2013
BIG ROCK POINT BWR 67 Permanent Shutdown CPC GE 01/05/1960 27/09/1962 08/12/1962 29/03/1963 29/08/1997
BONUS BWR 17 Permanent Shutdown DOE/PRWR GNEPRWRA 01/01/1960 13/04/1964 14/08/1964 01/09/1965 01/06/1968
CRYSTAL RIVER-3 PWR 860 Permanent Shutdown PROGRESS B&W 25/09/1968 14/01/1977 30/01/1977 13/03/1977 05/02/2013
CVTR PHWR 17 Permanent Shutdown CVPA WH 01/01/1960 01/03/1963 18/12/1963 18/12/1963 10/01/1967
DRESDEN-1 BWR 197 Permanent Shutdown EXELON GE 01/05/1956 15/10/1959 15/04/1960 04/07/1960 31/10/1978
DUANE ARNOLD-1 BWR 601 Permanent Shutdown NEXTERA GE 22/06/1970 23/03/1974 19/05/1974 01/02/1975 12/10/2020
ELK RIVER BWR 22 Permanent Shutdown RCPA AC 01/01/1959 01/11/1962 24/08/1963 01/07/1964 01/02/1968
FERMI-1 FBR 61 Permanent Shutdown DTEDISON UEC 08/08/1956 23/08/1963 05/08/1966 07/08/1966 29/11/1972
FORT CALHOUN-1 PWR 482 Permanent Shutdown EXELON CE 07/06/1968 06/08/1973 25/08/1973 26/09/1973 24/10/2016
FORT ST. VRAIN HTGR 330 Permanent Shutdown PSCC GA 01/09/1968 31/01/1974 11/12/1976 01/07/1979 29/08/1989
GE VALLECITOS BWR 24 Permanent Shutdown GE GE 01/01/1956 03/08/1957 19/10/1957 19/10/1957 09/12/1963
HADDAM NECK PWR 560 Permanent Shutdown CYAPC WH 01/05/1964 24/07/1967 07/08/1967 01/01/1968 05/12/1996
HALLAM X 75 Permanent Shutdown AEC/NPPD GE 01/01/1959 01/01/1963 01/09/1963 01/11/1963 01/09/1964
HUMBOLDT BAY BWR 63 Permanent Shutdown PG&E GE 01/11/1960 16/02/1963 18/04/1963 01/08/1963 02/07/1976
INDIAN POINT-1 PWR 257 Permanent Shutdown ENTERGY B&W 01/05/1956 02/08/1962 16/09/1962 01/10/1962 31/10/1974
INDIAN POINT-2 PWR 998 Permanent Shutdown ENTERGY WH 14/10/1966 22/05/1973 26/06/1973 01/08/1974 30/04/2020
INDIAN POINT-3 PWR 1030 Permanent Shutdown ENTERGY WH 30/10/1968 04/04/1976 25/04/1976 28/08/1976 28/04/2021 100.0
KEWAUNEE PWR 566 Permanent Shutdown DOMINION WH 06/08/1968 07/03/1974 08/04/1974 16/06/1974 07/05/2013
LACROSSE BWR 48 Permanent Shutdown DPC AC 01/03/1963 11/07/1967 26/04/1968 07/11/1969 30/04/1987
MAINE YANKEE PWR 860 Permanent Shutdown MYAPC CE 01/10/1968 23/10/1972 08/11/1972 28/12/1972 01/08/1997
MILLSTONE-1 BWR 641 Permanent Shutdown DOMINION GE 01/05/1966 26/10/1970 29/11/1970 01/03/1971 01/07/1998
OYSTER CREEK BWR 619 Permanent Shutdown EXELON GE 15/12/1964 03/05/1969 23/09/1969 01/12/1969 17/09/2018
PALISADES PWR 805 Permanent Shutdown ENTERGY CE 12/03/1967 22/05/1971 29/12/1971 20/05/2022 0.0
PATHFINDER BWR 59 Permanent Shutdown NMC AC 01/01/1959 01/01/1964 25/07/1966 01/08/1966 01/10/1967
PEACH BOTTOM-1 HTGR 40 Permanent Shutdown EXELON GA 01/02/1962 03/03/1966 27/01/1967 01/06/1967 01/11/1974
PILGRIM-1 BWR 677 Permanent Shutdown ENTERGY GE 26/08/1968 16/06/1972 19/07/1972 01/12/1972 31/05/2019
PIQUA X 12 Permanent Shutdown CofPiqua GE 01/01/1960 01/01/1961 01/07/1963 01/11/1963 01/01/1966
RANCHO SECO-1 PWR 873 Permanent Shutdown SMUD B&W 01/04/1969 16/09/1974 13/10/1974 17/04/1975 07/06/1989
SAN ONOFRE-1 PWR 436 Permanent Shutdown SCE WH 01/05/1964 14/06/1967 16/07/1967 01/01/1968 30/11/1992
SAN ONOFRE-2 PWR 1070 Permanent Shutdown SCE CE 01/03/1974 26/07/1982 20/09/1982 08/08/1983 07/06/2013
SAN ONOFRE-3 PWR 1080 Permanent Shutdown SCE CE 01/03/1974 29/08/1983 25/09/1983 01/04/1984 07/06/2013
SAXTON PWR 3 Permanent Shutdown SNEC GE 01/01/1960 01/01/1967 01/03/1967 01/05/1972
SHIPPINGPORT PWR 60 Permanent Shutdown DOE DUQU WH 01/01/1954 01/01/1957 02/12/1957 26/05/1958 01/10/1982
SHOREHAM BWR 820 Permanent Shutdown LIPA GE 01/11/1972 15/02/1985 01/08/1986 28/06/1989
THREE MILE ISLAND-1 PWR 819 Permanent Shutdown EXELON B&W 18/05/1968 05/06/1974 19/06/1974 02/09/1974 20/09/2019
THREE MILE ISLAND-2 PWR 880 Permanent Shutdown GPU B&W 01/11/1969 27/03/1978 21/04/1978 30/12/1978 28/03/1979
TROJAN PWR 1095 Permanent Shutdown PORTGE WH 01/02/1970 15/12/1975 23/12/1975 20/05/1976 09/11/1992
VERMONT YANKEE BWR 605 Permanent Shutdown ENTERGY GE 11/12/1967 24/03/1972 20/09/1972 30/11/1972 29/12/2014
YANKEE NPS PWR 167 Permanent Shutdown YAEC WH 01/11/1957 19/08/1960 10/11/1960 01/07/1961 01/10/1991
ZION-1 PWR 1040 Permanent Shutdown EXELON WH 01/12/1968 19/06/1973 28/06/1973 31/12/1973 13/02/1998
ZION-2 PWR 1040 Permanent Shutdown EXELON WH 01/12/1968 24/12/1973 26/12/1973 17/09/1974 13/02/1998
BELLEFONTE-1 PWR 1235 Suspended Constr. TVA B&W 01/09/1974
BELLEFONTE-2 PWR 1235 Suspended Constr. TVA B&W 01/09/1974
BAILLY BWR 660 Cancelled Constr. NIPS GE 01/01/1974 01/08/1981
BLACK FOX-1 BWR 1150 Cancelled Constr. PSCO GE 01/07/1978 01/02/1982
BLACK FOX-2 BWR 1150 Cancelled Constr. PSCO GE 01/07/1978 01/02/1982
CALLAWAY-2C PWR 1120 Cancelled Constr. UNION WH 01/10/1975 01/10/1981
CHEROKEE-1 PWR 1280 Cancelled Constr. DUKE CE 01/07/1976 01/04/1983
CHEROKEE-2 PWR 1280 Cancelled Constr. DUKE CE 01/07/1976 01/11/1982
CHEROKEE-3 PWR 1280 Cancelled Constr. DUKE CE 01/07/1976 01/11/1982
CLINTON-2 BWR 933 Cancelled Constr. IPC GE 01/10/1975 01/10/1983
FORKED RIVER PWR 1070 Cancelled Constr. JCPL CE 01/08/1973 01/11/1980
GRAND GULF-2 BWR 1250 Cancelled Constr. MP&L GE 01/05/1974 01/12/1990
HARRIS-2C PWR 900 Cancelled Constr. CPL WH 01/01/1978 01/12/1983
HARRIS-3C PWR 900 Cancelled Constr. CPL WH 01/01/1978 01/12/1981
HARRIS-4C PWR 900 Cancelled Constr. CPL WH 01/01/1978 01/12/1981
HARTSVILLE A-1 BWR 1233 Cancelled Constr. TVA GE 01/04/1976 01/08/1984
HARTSVILLE A-2 BWR 1233 Cancelled Constr. TVA GE 01/04/1976 01/08/1984
HARTSVILLE B-1 BWR 1233 Cancelled Constr. TVA GE 01/04/1976 01/08/1982
HARTSVILLE B-2 BWR 1233 Cancelled Constr. TVA GE 01/04/1976 01/08/1982
HOPE CREEK-2 BWR 1067 Cancelled Constr. PSEG GE 01/03/1976 01/12/1981
MARBLE HILL-1 PWR 1030 Cancelled Constr. PSI WH 01/07/1977 01/01/1984
MARBLE HILL-2 PWR 1130 Cancelled Constr. PSI WH 01/07/1977 01/01/1984
MIDLAND-1 PWR 491 Cancelled Constr. CPC B&W 01/03/1973 01/07/1986
MIDLAND-2 PWR 816 Cancelled Constr. CPC B&W 01/03/1973 01/07/1986
NORTH ANNA-3C PWR 907 Cancelled Constr. VEPCO B&W 01/06/1971 01/11/1982
NORTH ANNA-4C PWR 907 Cancelled Constr. VEPCO B&W 01/12/1971 01/11/1980
PERRY-2 BWR 1205 Cancelled Constr. CEI GE 01/10/1974 01/04/1984
PHIPPS BEND-1 BWR 1233 Cancelled Constr. TVA GE 01/10/1977 01/08/1982
PHIPPS BEND-2 BWR 1233 Cancelled Constr. TVA GE 01/10/1977 01/08/1982
RIVER BEND-2 BWR 934 Cancelled Constr. GSU GE 01/08/1975 01/01/1984
SEABROOK-2 PWR 1149 Cancelled Constr. FPL WH 01/07/1976 01/01/1988
SUMMER-2 PWR 1117 Cancelled Constr. SCE&G WH 08/03/2013 05/03/2019
SUMMER-3 PWR 1117 Cancelled Constr. SCE&G WH 01/11/2013 05/03/2019
SURRY-3 PWR 859 Cancelled Constr. VEPCO WH 01/01/1974 01/03/1977
SURRY-4 PWR 859 Cancelled Constr. VEPCO WH 01/01/1974 01/03/1977
WNP-1 PWR 1259 Cancelled Constr. WPPSS B&W 01/08/1975 01/01/1983
WNP-3 PWR 1240 Cancelled Constr. WPPSS CE 01/04/1977 01/01/1983
WNP-4 PWR 1250 Cancelled Constr. WPPSS B&W 01/08/1975 01/01/1982
WNP-5 PWR 1240 Cancelled Constr. WPPSS CE 01/04/1977 01/01/1982
YELLOW CREEK-1 PWR 1285 Cancelled Constr. TVA CE 01/02/1978 30/08/1984
YELLOW CREEK-2 PWR 1285 Cancelled Constr. TVA CE 01/02/1978 30/08/1984
ZIMMER-1 BWR 810 Cancelled Constr. CG&E GE 01/10/1972 01/01/1984
Data source: IAEA - Power Reactor Information System (PRIS).
Note: Table is completely generated from PRIS data to reflect the latest available information and may be more up to date than the text of the report.

2.2.2. Plant upgrading, plant life management and licence renewals

Plant operators have implemented power uprates as to increase reactor output. Power uprates are expressed as a percentage of the original licensed capacity of a reactor and are classified by the NRC in three groups:

  • Measurement uncertainty recapture uprates, which include enhanced techniques for calculating reactor power, are typically less than 2%.

  • Stretch power uprates are typically less than 7% and do not usually involve major plant modifications.

  • Extended power uprates require significant modifications to most plant equipment, might take place over several refuelling outages and can be as much as 20%.

US nuclear plants are licensed by the NRC to operate for 40 years, after which plants can extend their operating licences for up to 20 years at a time. Most US nuclear reactors have already renewed their operating licences.

Several plants will be nearing the end of the first 20 year extension by 2029 and will be seeking to renew their licences a second time for another 20 year period. As of 2021 the NRC has so far approved subsequent licence renewal (SLR) applications for Turkey Point Units 3 and 4, Peach Bottom Units 2 and 3, and Surry Units 1 and 2. The NRC is currently reviewing SLR applications from St. Lucie Units 1 and 2, Point Beach Units 1 and 2, North Anna Units 1 and 2, and Oconee Units 1, 2, and 3.

See Section 2.11 for post- Fukushima accident U.S. nuclear plant safety upgrades.

2.2.3. Permanent shutdown and decommissioning process

The retirement process for nuclear power plants involves disposing of nuclear waste and decontaminating equipment and facilities to reduce residual radioactivity, making the process to be more expensive and time consuming than retiring other types of power plant.

Since 2013, twelve commercial nuclear reactors were retired. Most recently the Indian Point Energy Centre permanently stopped generating electricity on April 30, 2021 when it retired its last operating nuclear reactor, Unit 3, earlier than originally planned. The facility began operations in 1962 and produced over 565 terawatt-hours (TW-h) of electricity in the 59 years it was open.

However, the nuclear share of total electricity generation has remained relatively constant over the years despite a decrease in the total number of operating reactors. This is largely the result of performance improvements such as power uprates and increased operator experience.

As of 2020, 11 commercial nuclear reactors have been successfully decommissioned, and another 21 reactors are currently in various stages of the decommissioning process (Table 6). Licensees can choose from the following three decommissioning strategies:

  • DECON (immediate dismantling) begins soon after the nuclear facility closes. Equipment, structures and the portions of the facility that contain radioactive contaminants are removed or decontaminated to a level that permits release of the property and termination of the licence.

  • SAFSTOR, often referred to as deferred dismantling, is when a nuclear facility is maintained and monitored in a condition that allows the radioactivity to decay. Once the radioactivity reaches a safe level, the plant is dismantled and the property is decontaminated.

  • ENTOMB is when radioactive contaminants are permanently encased on site in structurally sound material such as concrete. The facility is maintained and monitored until the radioactivity decays to a level permitting restricted release of the property. To date, no NRC licensed facilities have requested this option.

The licensee may also choose to adopt a combination of the first two choices in which some portions of the facility are dismantled or decontaminated while other parts of the facility are left in SAFSTOR. The decision may be based on factors besides radioactive decay, such as availability of waste disposal sites.

Decommissioning must be completed within 60 years of the plant ceasing operations. An extension of that time would be considered only when necessary to protect public health and safety under NRC regulations. The decommissioning process is complete when the NRC determines that the dismantlement has been performed according to the plan submitted by the operator at the beginning of the decommissioning process.

The decommissioning process is paid for through a fund that each plant operator creates during construction with funds typically accumulated during the period of commercial operations. About two thirds of the total estimated cost of decommissioning all US nuclear reactors has been collected. The remainder will be collected as newer plants continue to operate and generate revenues. The utility must report to the NRC every two years on the status of funding until the plant is within five years of permanent shutdown, at which time reporting becomes annual.

TABLE 6. STATUS OF DECOMMISSIONING PROCESS OF NUCLEAR POWER PLANTS

Reactor unit

Shutdown reason

Decom. strategy

Current decom. phase

Current fuel management phase

Decom. licensee

Licence terminated year

BIG ROCK POINT

Economic

DECON

Partial dismantling

ISFSI

CPC

2007

BONUS

Technological

In situ disposal

Final dismantling, licence terminated

Off-site

DOE/PRWR

1970

CRYSTAL RIVER-3

Technological

SAFSTOR

Planning

Dry storage

DUKE

2074-e

CVTR

Political

SAFSTOR

Partial dismantling

Off-site

CVPA

2009

DRESDEN-1

Economic

SAFSTOR

Final dismantling, licence terminated

Dry storage

EXELON

1978

DUANE ARNOLD

Economic

SAFSTOR

Planning

Fuel cool

NEXTERA

TBD

ELK RIVER

Obsolete

DECON

Final dismantling, licence terminated

Dry storage

RCPA

1974

FERMI-1

Technological

SAFSTOR

Final dismantling, licence terminated

Dry storage

DTEDISON

2025

FORT CALHOUN

Economic

SAFSTOR

Planning

Fuel cool

OPPD

2077-e

FORT ST. VRAIN

Obsolete

DECON

Partial dismantling

ISFSI

PSCC

1996

GE VALLECITOS

Obsolete

SAFSTOR

Final dismantling

Off-site

GE&PGEC

2019-e

HADDAM NECK

Economic

DECON

Waste shipment, partial dismantling

ISFSI

CYAPC

2007

HALLAM

Technological

SAFSTOR

Partial dismantling

Dry storage

AEC&NPPD

1971

HUMBOLDT BAY

Technological

SAFSTOR

Waste conditioning, waste shipment, partial dismantling

Dry storage

PG&E

2013

INDIAN POINT-1

Technological

SAFSTOR

Planning

Dry storage

ENTERGY

TBD

INDIAN POINT-2

Political, economic

SAFSTOR

Planning

Fuel cool

ENTERGY

TBD

INDIAN POINT-3

Political, economic

SAFSTOR

Planning

Fuel cool

ENTERGY

TBD

KEWAUNEE

Economic

SAFSTOR

 Final dismantling, licence terminated

Off-site

DOMINRES

2073-e

LACROSSE

Economic

SAFSTOR

Final dismantling

Dry storage

DPC

2020-e

MAINE YANKEE

Economic

DECON

Waste shipment off-site

ISFSI

MYAPC

2005

MILLSTONE-1

Economic

SAFSTOR

Planning

Dry storage

DOMINRES

2056-e

OYSTER CREEK

Economic

SAFSTOR

Planning

Fuel cool

EXELON

TBD

PATHFINDER

Technological

SAFSTOR

Licence terminated

Off-site

NMC

TBD

PEACH BOTTOM-1

Obsolete

SAFSTOR

Final dismantling

Off-site

EXELON

2034-e

PILGRIM

Economic

SAFSTOR

Planning

Fuel cool

Entergy

TBD

PIQUA

Technological

In situ disposal

Licence terminated

Off-site

CofPiqua

1968

RANCHO SECO-1

Economic, technological

SAFSTOR

Licence terminated

ISFSI

SMUD

2009

SAN ONOFRE-1

Others

SAFSTOR

Waste shipment off-site

Dry storage

SCE

2008

SAN ONOFRE-2

Political, technological

SAFSTOR

Planning

Fuel cool

SCE

2030-e

SAN ONOFRE-3

Political, technological

SAFSTOR

Planning

Fuel cool

SCE

2030-e

SAVANNAH

Other

SAFSTOR

Partial dismantling

Off-site

DOE

2031-e

SAXTON

Other

SAFSTOR

Licence terminated

Off-site

GPUNC

2005

SHIPPINGPORT

Licence requirements

SAFSTOR

Licence terminated

Off-site

DOE DUQU

1989

SHOREHAM

Political

DECON

Licence terminated

Off-site

LIPA

1995

THREE MILE ISLAND-2

Operating incident

SAFSTOR

Final dismantling, licence terminated

Off-site

GPU

1979

TROJAN

Economic

SAFSTOR

Licence terminated

ISFSI

PORTGE

2005

VERMONT YANKEE

Political

SAFSTOR

Planning

Fuel cool

ENTERGY

2015

YANKEE NPS

Economic, political

DECON

Waste shipment, partial dismantling

Fuel cool

YAEC

2005

YANKEE ROWE

Technological

SAFSTOR

Partial dismantling

ISFSI

YAEC

1991

ZION-1

Economic, technological

SAFSTOR

Final dismantling

Dry storage

COMMED

1997

ZION-2

Economic, technological

SAFSTOR

Final dismantling

Dry storage

COMMED

1996

Source: NRC, EIA.

Notes: An independent spent fuel storage installation (ISFSI) is a standalone facility within the plant boundary. In situ disposal is the permanent entombment of a facility that contains residual radiological and/or chemical contamination. Estimated licence termination dates are suffixed with an ‘e’ (example 2070-e). Decom. — decommissioning.

2.3 FUTURE DEVELOPMENT OF NUCLEAR POWER SECTOR

2.3.1. Nuclear power development strategy

The DOE Office of Nuclear Energy (DOE NE) leads US efforts to advance nuclear power as a resource capable of meeting the nation’s energy, environmental, and national security needs by resolving technical, cost, safety, proliferation resistance and security barriers through research, development and demonstration, as appropriate. To achieve its mission, the DOE NE is pursuing four objectives in its Nuclear Energy Research and Development Roadmap:

Congress granted the DOE authority to issue US $20.5 billion in nuclear power loan guarantees. The DOE issued solicitations for US $18.5 billion in loan guarantees for new nuclear power facilities and US $2 billion for the front end of the nuclear fuel cycle on 30 June 2008. In February 2014, the DOE finalized the first federal loan guarantee for US $6.5 billion with Georgia Power Company and Oglethorpe Power Corporation for the construction and operation of two reactors at Vogtle. In March 2018, the DOE announced up to US $3.7 billion in additional guarantees of loans to finance the continued construction of Vogtle Units 3 and 4 (see Table 7).

In early 2018, the deadline for the nuclear production tax credit for advanced nuclear power plants was extended under a budget bill passed by the US Senate and House of Representatives. Section 40501 of the new law allows reactors entering service after 31 December 2020 to qualify for the tax credits (there is no established sunset provision for the credits at this time) and enables the US Secretary of Energy to allocate credits for up to 6000 MW(e) of new nuclear capacity which enters service after 1 January 2021. The extension means that the two Vogtle units under construction will be eligible for the tax credits. Other projects, such the NuScale Power SMR plant planned to be built at the Idaho National Laboratory by 2026, will also now qualify.

TABLE 7. PLANNED NUCLEAR POWER PLANTS

Reactor unit Owner Type Capacity MW(e) Construction start year Expected commercial year
Plant Vogtle Unit 3 Southern Company PWR 1100 Started in 2013 2022
Plant Vogtle Unit 4 Southern Company PWR 1100 Started in 2013 2023

Source: NRC.

2.3.2. Project management

Project management in the construction and operations of nuclear power plants is the responsibility of the owners and operators of nuclear power plants. The Institute of Nuclear Power Operations (INPO) is an industry organization that undertakes the following activities, among other mission objectives, at the request of individual nuclear power plant owners or operators:

  • Conducting plant evaluations;

  • Supporting training and accreditation for nuclear power professionals;

  • Assisting in the analysis of significant events at nuclear power plants;

  • Communicating lessons learned;

  • Providing assistance with technical and management issues.

2.3.3. Project funding

Nuclear utilities and, in some cases, public utility commissions are responsible for project financing decisions. Funding is secured from banks and through shareholder equity. The federal Government, through the Energy Policy Act of 2005 (EPACT2005), provides incentives for the construction of new nuclear power plants, including tax credits, loan guarantees and standby support insurance related to regulatory delays. Section 2.3.1 provides further details on project funding options.

2.3.4. Electric grid development

At the beginning of the 20th century, more than 4000 individual electric utilities operated in isolation from each other. As the demand for electricity grew, especially after World War II, utilities began to connect their transmission systems. These connections allowed utilities to share the economic benefits of building large and often jointly owned electric generating units to serve their combined electricity demand at the lowest possible cost. Interconnection also reduced the amount of extra generating capacity that each utility had to hold to ensure reliable service during times of peak demand. Over time, three large, interconnected systems evolved in the USA (see Section 1.2.2).

Transmission is a prominent federal issue because of a perceived need to improve reliability and reduce costs, transmission’s role in meeting national energy goals (such as increased use of renewable electricity), and the potential efficiency advantages of ‘Smart Grid’ modernization.

One aspect of the Smart Grid is the automation necessary to allow two-way communication between the utility and its customers. Numerous agencies and organizations are involved in efforts to modernize the transmission grid. The DOE sponsors R&D related to numerous technologies, including the Smart Grid.

2.3.5. Sites

Currently, three potential sites for nuclear expansion are under consideration. The utilities are waiting on the outcome of the Vogtle project, clarity on the outlook for natural gas supply, and electricity demand before setting construction start dates and making firm plans (see Table 8).

TABLE 8. POTENTIAL NUCLEAR CAPACITY EXPANSION

Station/Project Name
Type
Units
Capacity MW(e)
Application submitted
Application status
COL/OL issued
Expected commercial year
Fermi Unit 3
ESBWR
1
1520
2008-09-13
Issued
2015
TBD
South Texas Project Units 3 & 4
ABWR
2
2700
2007-09-20
Issued
2016
TBD
Turkey Point Units 6 & 7
AP1000
2
2234
2009-06-30
Issued
2018
TBD

Sources: Fermi Unit 3, South Texas Project Units 3 and 4, Turkey Point Units 6 and 7.

Note: ABWR — advanced boiling water reactor; AP1000 — advanced passive 1000 reactor; COL — combined licence; OL — operating licence. ESBWR is interpreted as economic simplified boiling water reactor for the US version, and US-APWR as US advanced pressurized water reactor.

2.3.6. Public awareness

Civic activism is encouraged in the USA, and nuclear power stakeholders have numerous mechanisms for expressing their support for, or opposition to, nuclear power. Stakeholders express their opinions to federal, state and local governments; they are encouraged to participate in regulatory proceedings through formal meetings and by providing comments on proposed rulemaking. Civil reactions to nuclear projects range from optimism about clean electricity generation and increased local employment to concerns over construction times, rate increases and water safety.

2.4. ORGANIZATIONS INVOLVED IN THE CONSTRUCTION OF NPPs

A large number of companies provide equipment and services to the US nuclear power industry that cover the entire nuclear fuel cycle. Westinghouse Corporation built most of the PWR units, although Combustion Engineering and Babcock & Wilcox also built some. General Electric designed all of the BWRs currently operating in the USA. Westinghouse Corporation has been sold to Brookfield Business Partners.

To help assure high quality products, the American Society of Mechanical Engineers (ASME) certifies nuclear equipment suppliers. To obtain a nuclear certificate of authorization (often referred to as an N-Stamp), a company must comply with quality assurance requirements set forth by the ASME, which is open to foreign companies. Presently, more than 200 foreign and American companies hold ASME nuclear certificates of authorization.

2.5. ORGANIZATIONS INVOLVED IN THE OPERATION OF NPPs

Most operating nuclear reactors in the USA are privately owned and operated, although nine are operated by government owned entities. Some nuclear power plants are partially owned but not managed by municipal or electric cooperatives. Thirty-two companies or management organizations are licensed by the NRC to operate reactors.

2.6. ORGANIZATIONS INVOLVED IN THE DECOMMISSIONING OF NPPs

When a US power company decides to permanently close a nuclear power plant, the facility must be decommissioned by safely removing it from service and reducing residual radioactivity to a level that permits the NRC to release the property and terminate the operating licence.

Federal agencies oversee the entire nuclear decommissioning process:

  • The NRC establishes regulations and provides oversight of nuclear power plant decommissioning. The NRC maintains the highest level of decommissioning regulatory authority and collaborates with other agencies to supervise decommissioning.

  • The EPA collaborates with the NRC to establish environmental standards and provide oversight of nuclear power plant decommissioning.

  • OSHA collaborates with the NRC to ensure the safety of workers at nuclear power plants undergoing decommissioning.

  • The DOT regulates the shipment of radioactive materials, including those resulting from decommissioning a nuclear power plant.

State and local agencies are also involved as regulators of worker and public health and safety. The Electric Power Research Institute and the decommissioning industry cooperate to develop decontamination techniques.

2.7. FUEL CYCLE, INCLUDING WASTE MANAGEMENT

EIA publishes data on the nuclear fuel cycle (Fig. 5) in its Domestic Uranium Production Report and its Uranium Marketing Annual Report. The NRC publishes background and licensing information on fuel cycle operations.

FIG. 5. The fuel cycle for light water nuclear reactors.

Source: US Nuclear Regulatory Commission.

Notes: Reprocessing of spent nuclear fuel, including mixed oxide (MOX) fuel, is not practiced in the USA. The NRC has no regulatory role in mining uranium; regulations are primarily left to the states and the Bureau of Land Management

The following are some salient points:

  • Drilling: In 2017, total uranium drilling was 420 holes with total footage of 60 960 metres, and expenditures for uranium drilling were US $4 million. (2018–020 data is not available due to current EIA industry data non-disclosure requirements.)

  • Mining and production: The NRC has no regulatory role in mining uranium; regulations are primarily left to the states and the Bureau of Land Management. (Data for 2019 in situ leaching production are not available owing to EIA data disclosure requirements.)

  • Conversion: The USA has one uranium conversion plant, located in Metropolis, Illinois, and operated by ConverDyn. The ConverDyn facility has a nameplate conversion capacity of approximately 13 608 tonnes of uranium per year to UF6.

  • Enrichment: Uranium enrichment in the USA is accomplished by gas centrifuge, although laser separation technology is under development for possible use to enrich uranium. Currently, the only gas centrifuge commercial production plant is the URENCO USA facility licensed as Louisiana Energy Services in Eunice, New Mexico. Two other licences were granted by the NRC for the construction of commercial gas centrifuge facilities. The status of these licences is available on the NRC web site.

  • Fuel fabrication: Three companies fabricate nuclear fuel for light water reactors: Westinghouse Electric Company in Columbia, South Carolina; Global Nuclear Fuels — Americas in Wilmington, North Carolina; and AREVA NP in Richland, Washington. All three fabricators supply fuel for US BWRs; AREVA NP and Westinghouse Electric Company also supply fuel for US PWRs.

  • Spent fuel storage: Most spent nuclear fuel is safely stored in specially designed pools at reactor sites around the country. Plant operators may store spent nuclear fuel in dry cask storage systems when they approach their pool capacity limits at independent spent fuel storage facilities. Operators may also store spent nuclear fuel in dry cask storage systems away from the reactor at independent spent fuel storage facilities.

  • Reprocessing: Commercial reprocessing of spent nuclear fuel, including mixed oxide fuel, is not practised in the USA, although it has been allowed in the past.

  • Spent fuel disposal: In 2011, federal funding for Yucca Mountain, the US permanent disposal repository for spent nuclear fuel, was cancelled. Reopening the repository is currently under federal and state review. Commercial nuclear power reactors store most of their used nuclear fuel (UNF) on site at the nuclear plant, although a small amount has been shipped to off-site facilities.

2.8. RESEARCH AND DEVELOPMENT

2.8.1. R&D organizations

Nuclear R&D is conducted by private industry, the federal Government and US universities. Private companies are actively investigating reactor technology, enrichment technology and nuclear fuel design. One of the main institutions for private research funding is the Electric Power Research Institute, which, through membership fees, conducts R&D in many nuclear related areas as well as other areas of the electric power industry.

The federal Government supports R&D through budget allocations for the NRC and for the DOE NE. Private companies, under contract with the DOE, operate a series of national laboratories. The DOE oversees 26 laboratories and institutes, many of which are involved with nuclear technologies.

The DOE NE’s programme and priority activities are guided by the Nuclear Energy Research and Development Roadmap, which was issued in April 2010. Since the 2011 Fukushima accident the DOE NE has engaged in a number of new research activities to address specific safety related issues, such as the development of accident tolerant fuel forms and accident tolerant instruments. Likewise, to support these activities, the DOE NE is also using advanced high performance computing for modelling and simulation.

2.8.2. Development of advanced nuclear power technologies

The DOE NE supports R&D to improve safety and reliability to help extend the life of current reactors and to develop improvements in the safety, affordability, and proliferation resistance of new reactors.

In the area of nuclear reactor technologies, the DOE NE’s Light Water Reactor Sustainability Program focuses on developing the scientific basis to extend nuclear power plant operating life beyond the current 60 year licensing period while ensuring long term reliability, safety, and security.

In addition, the DOE NE is supporting the commercialization of US based SMR technologies through its SMR Licensing Technical Support Program. The programme promotes the accelerated deployment of SMRs by supporting certification and licensing requirements through cooperative agreements with industry partners and by supporting the resolution of generic SMR issues. There are currently two SMR projects under development. In 2017, the DOE NE granted a permit to support an SMR project at the Idaho National Laboratory site. Also, TVA is planning an SMR demonstration project at its Clinch River site, for which the NRC has approved an early site permit.

Finally, the DOE NE is supporting the development of advanced reactor technologies, focusing on high temperature, natural gas cooled reactors through its Next Generation Nuclear Plant programme, advanced SMRs and advanced reactor concepts. This focus is expected to address long term technical barriers for the development of advanced nuclear fission energy systems that use coolants such as liquid metal, fluoride salt, or natural gas.

The DOE NE’s Office of Fuel Cycle Technologies (FCT) develops sustainable fuel cycle technologies and options and develops UNF management strategies and technologies to support meeting federal Government responsibility to manage and dispose of US commercial UNF and high-level waste (HLW).

  • Within the FCT programme, the Fuel Cycle Research and Development programme conducts R&D to help develop sustainable fuel cycles to improve uranium resource utilization, maximize energy generation, minimize waste generation, improve safety and limit proliferation risk.

  • The Nuclear Fuels Storage and Transportation Planning Project is responsible for developing and starting an integrated management plan to implement interim storage, improve the overall integration of storage as a planned part of the waste management system and prepare for the large-scale transport of UNF and HLW, with an initial focus on removing UNF from the shutdown reactor sites.

  • The Office of Uranium Management and Policy works to assure domestic supplies of fuel for nuclear power plants. In addition, the Office of Used Nuclear Fuel Disposition Research and Development conducts R&D related to the storage, transport, and disposal of UNF and HLW.

  • The Systems Engineering and Integration Program develops and implements analysis processes and tools and performs integrated fuel cycle technical assessments to provide information that can be used to objectively and transparently inform and integrate FCT activities.

2.8.3. International cooperation and initiatives

The Government collaborates with international partners to support the safe, secure and peaceful use of nuclear energy. The DOE NE works both bilaterally and multilaterally to accomplish this work.

Bilaterally, the DOE NE collaborates in civil nuclear R&D and related issues through several vehicles, including the International Nuclear Energy Research Initiative, negotiated R&D agreements, memoranda of understanding, technical action plans, working groups, and the International Nuclear Cooperation framework.

Multilaterally, the USA cooperates with international partners through the Generation IV International Forum, the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development, the IAEA, and the International Framework for Nuclear Energy Cooperation.

The Office of International Energy Policy and Cooperation (INEPC) oversees and manages the DOE’s international commercial nuclear fuel management initiatives and supports DOE and government initiatives that foster increased US exports of nuclear fuel and services, as appropriate. INEPC encourages international cooperation between governments and industry to provide commercially attractive fuel service options, including a comprehensive nuclear fuel services approach.

The NRC has close working relationships with 35 countries and conducts confirmatory regulatory research in partnership with nuclear safety agencies and institutes in more than 20 countries. Research includes, but is not limited to, the following projects and programmes:

  • The International Nuclear Regulators Association;

  • The Cooperative Severe Accident Research Program;

  • The Code Applications and Maintenance Program;

  • The Steam Generator Tube Integrity Program;

  • The Radiological Computer Code Analysis and Maintenance Program.

2.9. HUMAN RESOURCES DEVELOPMENT

The USA has reversed the trend of declining enrolment at nuclear engineering schools over the past five years. Generally, the workforce in the nuclear power industry is ageing; many professional skills may be lost as the staff at nuclear power plants, research facilities, universities and national laboratories retire. With limited nuclear power plant construction under way, the number of trained personnel the industry will require in the future is unclear. However, the long-term decline in the number of university programmes offering nuclear engineering degrees reversed course in the late 1990s; several schools have added programmes in the past few years.

The DOE NE has an active programme to encourage the development of academic programmes related to nuclear power through its Nuclear Energy University Program (NEUP). NEUP was created in 2009 to consolidate university support under one initiative and better integrate university research within the DOE NE’s technical programmes. NEUP engages US colleges and universities to conduct R&D, enhance infrastructure and support student education, thereby helping to build and sustain an advanced nuclear energy workforce capability. In 2020, the DOE awarded more than US $5 million for undergraduate scholarships and graduate fellowships to students pursuing nuclear energy related disciplines at universities across the country. 

In 2007, the nuclear industry developed and began implementing the Nuclear Uniform Curriculum Program (NUCP). The NUCP is managed by the Nuclear Energy Institute and is a standardized certificate programme designed to ensure that a well trained workforce is available when needed. Industry partners with two year educational institutions to permit certificate holders to be exempt from some initial training at a nuclear power plant.

The American Nuclear Society, a professional organization, also promotes the expansion of academic programmes related to nuclear power at higher education institutions.

2.10. STAKEHOLDER INVOLVEMENT

Stakeholders in the USA include, but are not limited to, state and tribal governments, local communities, federal agencies, industry, and professional organizations. Communications are timely and open through formal and informal processes. From a regulatory perspective, formal processes may include:

  • Information exchanges;

  • Public comment on proposed regulations;

  • Annual meetings with stakeholders at each reactor facility;

  • Participation in legal proceedings.

The goal of formal regulatory stakeholder communication is to ensure that the public has the opportunity to enhance its understanding of the regulatory process. Stakeholders are provided with advance notice of regulatory meetings in a timely manner.

2.11. EMERGENCY PREPAREDNESS

Nuclear utilities; federal, state and local governments; as well as volunteers and first responders work together in the event of an emergency at a nuclear power plant. Each plant is responsible for developing on-site and off-site emergency response plans. Federal oversight of emergency preparedness for nuclear power plants is shared by the NRC and FEMA, which is part of the US Department of Homeland Security.

The respective roles of the NRC, FEMA and state and local governments are identified on the NRC’s federal, state and local responsibilities web site. The NRC has statutory responsibility for the radiological health and safety of the public by overseeing on-site preparedness and has overall authority for both on-site and off-site emergency preparedness.

As part of its reactor oversight process, the NRC reviews nuclear power plant emergency planning procedures and training. FEMA acts as the federal facilitator with state and local governments. State and local governments are responsible for determining and implementing appropriate public protective actions during a radiological emergency and are also responsible for notifying the public to take such protective actions.

Each utility is required to conduct emergency preparedness exercises with the NRC, FEMA and off-site authorities at least once every two years to ensure state and local officials remain proficient in implementing their emergency plans. Utilities also regularly conduct drills to test the emergency plans.

Detailed information about emergency preparedness is contained in NRC regulations and in a joint publication of the NRC and FEMA entitled Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power Plants. Additional information is available on the NRC’s emergency preparedness and response web site as well as FEMA’s Radiological Emergency Preparedness Program web site.

The NRC has taken significant actions to enhance reactor safety based on the lessons learned from the accident at the Fukushima Daiichi nuclear power plant. These actions are related to accident mitigation strategies, reliable hardened containment venting capability, improved spent fuel pool instrumentation, seismic hazard re-evaluation, flooding re-evaluation, emergency preparedness, mitigation of beyond design basis events, and improvements to the NRC’s regulatory process.

3. NATIONAL LAWS AND REGULATIONS

3.1. REGULATORY FRAMEWORK

3.1.1. Regulatory authority(s)

The NRC’s mission is to regulate the nation’s civilian use of by-product, source and special nuclear materials to ensure adequate protection of public health and safety, to promote the common defence and security, and to protect the environment. The NRC has regulatory responsibility for the following:

  • Commercial reactors used to generate electric power and non-power reactors for research, testing and training;

  • Uranium enrichment facilities and nuclear fuel fabrication facilities;

  • Uses of nuclear materials in medical, industrial and academic settings, and facilities that produce nuclear fuel;

  • Transport, storage and disposal of nuclear materials and waste, as well as decommissioning of nuclear facilities.

The DOE serves a secondary, but highly significant, role in administering support to the nuclear power industry. The DOE NE serves to promote civil nuclear technology through research, development and demonstration. The National Nuclear Security Administration maintains and enhances nuclear safety and security and responds to nuclear and radiological emergencies in the USA and abroad. EIA provides statistical data and analysis for nuclear and uranium.

The North American Electric Reliability Corporation (NERC) is a non-profit regulatory authority that addresses the reliability of the US electrical system. The NERC develops and enforces reliability standards; annually assesses seasonal and long-term reliability; monitors the bulk power system through system awareness; and educates, trains and certifies industry personnel.

3.1.2. Licensing process

The Energy Policy Act of 1992 specified the new nuclear power plant licensing process. Under the new licensing procedure, an applicant who seeks to build a new reactor can use off the shelf reactor designs that have been previously approved and certified by the NRC. After reviewing the application and holding public hearings, the NRC may issue a licence.

Under the current licensing process, the NRC may issue a combined construction and operating licence (COL). In the past, separate construction permits and operating licences were issued. When the applicant uses an NRC certified design, safety issues related to the design have already been resolved, and the focus of the licensing review is the quality of reactor construction.

A COL is valid for 40 years and may be extended for additional periods of 20 years at a time. By stabilizing the licensing process, the NRC’s objective was to shorten construction lead times and improve the economics of new nuclear power plant licensing and construction.

Before authorizing power operation at a reactor, certain standards identified in the COL must be satisfied. These standards are called inspections, tests, analyses and acceptance criteria (ITAAC). Most of the ITAAC are from the reactor design certification; the remaining ITAAC are site specific and are included in the COL or early site permit (ESP) application.

3.1.2.1. Early site permit applications

Independent of an application for a construction permit (10 CFR 50 [4]) or a COL (10 CFR 52 [5]), the NRC may approve one or more sites for a nuclear power plant. An ESP remains in effect for 10 to 20 years and may be renewed for an additional 10 to 20 years. As of 31 December 2020, the NRC had issued ESPs for six sites.

3.1.2.2. Design certifications for new reactors

The NRC has issued design certifications for seven new designs: the Westinghouse AP600 and AP1000, System 80+, the General Electric nuclear energy advanced boiling water reactor (ABWR), the ABWR Design Certification Rule (DCR) Amendment, the GE–Hitachi economic simplified boiling water reactor (ESBWR), and advanced power reactor 1400 (APR1400). In addition to several amendments to previously certified designs, the NRC is currently reviewing the applications for four additional design certifications. Under current licensing regulations, an applicant who seeks to build a new reactor can use an off the shelf reactor design that the NRC has previously approved and certified. The streamlined process encourages standard or pre-approved reactor designs. Issuance of a design certification is independent of applications for a construction permit or an operating licence. Design certifications are valid for 15 years and may be renewed for an additional 10 to 15 years.

3.2. NATIONAL LAWS AND REGULATIONS IN NUCLEAR POWER

Congress has enacted several laws that delineate a comprehensive regulatory programme governing the design, construction and operation of nuclear energy plants. Transport and disposal of radioactive waste is a major concern of the industry and the public, and there is specific legislation to address such activities as well.

This list is not exhaustive; additional national legislation affecting the nuclear industry also exists. Although the federal Government has an extensive role in the nuclear industry, individual states and some local jurisdictions have a regulatory role.

  • Bipartisan Infrastructure Law, 2021: Includes continued funding for Advanced Reactor Demonstration Program (ARDP) projects, which are targeting deployments in the late 2020s. A DOE implemented US $6 billion Civil Nuclear Credit Program that would provide financial support to certain nuclear reactors that are at risk of closing due to insufficient valuation in electricity markets.

  • Consolidated Appropriations Act, 2018: Includes over US $1.2 billion in support for the DOE NE programmes and US $922 million for the NRC. The bill also allows reactors entering service after 31 December 2020 to qualify for the tax credits (there is no established sunset provision for the credits at this time) and enables the US Secretary of Energy to allocate credits for up to 6000 MW(e) of new nuclear capacity which enters service after 1 January 2021.

  • The American Recovery and Reinvestment Act of 2009 (ARRA 2009): The American Recovery and Reinvestment Act of 2009 directed funding for energy efficiency and renewable energy as well as loan guarantees for renewable energy, including nuclear power.

  • The Energy Policy Act of 2005 (EPACT2005): EPACT2005 contained provisions affecting nuclear power, including the renewal of the Price–Anderson Act and incentives for building the first advanced nuclear power plants. Incentives include tax credits, loan guarantees and standby support insurance related to regulatory delays.

  • The Energy Policy Act of 1992 (EPACT1992) (Public Law 102-486): EPACT1992 created a new category of electricity producer, the exempt wholesale generator, which circumvented the Public Utility Holding Company Act’s (PUHCA’s) impediments to non-utility electricity generation. EPACT1992 also allowed FERC to open the national electricity transmission system to wholesale suppliers. Of EPACT1992’s 30 titles, 7 contain provisions related specifically to nuclear power and/or uranium.

  • The Clean Air Act Amendments of 1990 (Public Law 101-549): These amendments established a new emissions reduction programme that sought to reduce annual sulphur dioxide emissions by 10 million tonnes and annual nitrogen oxide emissions by 2 million tonnes from 1980 levels from all human made sources. Generators of electricity were to be responsible for large portions of the sulphur dioxide and nitrogen oxide reductions.

  • Low-level Radioactive Waste Policy Amendments Act of 1985 (Public Law 96-573, as amended): This act was an important step towards the development of new disposal capacity for low level waste (LLW). Each state was made responsible for providing, by itself or in cooperation with other states, for the disposal of LLW generated within the state. The act authorizes the states to form compacts to establish and operate regional LLW disposal facilities, subject to NRC licensing approval.

  • Nuclear Waste Policy Act of 1982, as amended (Public Law 97-425): This act established federal responsibility for the development of repositories for the disposal of HLW and UNF. It was amended in 1987 to require DOE to begin evaluating the suitability of Yucca Mountain in Nevada as the US permanent HLW repository.

  • The Public Utility Regulatory Policies Act of 1978 (PURPA) (Public Law 95-617): PURPA sought to promote conservation of electric energy in response to the unstable energy climate of the late 1970s. PURPA created a new class of non-utility generators (small power producers), from which, along with qualified co-generators, utilities were required to buy power.

  • The Clean Water Act of 1977 (Public Law 95-217): The Clean Water Act of 1977 is the primary law governing the discharge of pollutants into all US surface waters. Under this law, the EPA requires that a National Pollutant Discharge Elimination System permit be obtained before any pollutant is released.

  • Energy Reorganization Act of 1974 (Public Law 93-438): This act separated the licensing and related functions of the AEC from energy development and related functions. The NRC succeeded the AEC as an independent regulatory authority to ensure the safety and licensing of nuclear reactors and other facilities associated with the processing, transport and handling of nuclear materials.

  • Price–Anderson Nuclear Indemnity Act of 1957 (Public Law 83-703, as amended): The Price–Anderson Act requires each operator of a nuclear power plant to obtain the maximum primary coverage of liability insurance. In the past, the annual premium paid by owners of nuclear power plants was US $375 million per reactor. Damages exceeding that amount are funded with a retroactive assessment on all other owners of commercial reactors, based on the number of reactors they own and not to exceed about US $112 million.

  • Atomic Energy Act of 1954 (Public Law 83-703, as amended): The Atomic Energy Act of 1954 encouraged private enterprise to develop and use nuclear energy for peaceful purposes. This act amended the Atomic Energy Act of 1946 to allow non-federal ownership of nuclear production and utilization facilities if an operating licence was obtained from the AEC. This act enabled the development of the commercial nuclear power industry in the USA.

  • The Federal Power Act of 1935 (Title II of PUHCA): The Federal Power Act of 1935 was passed at the same time as PUHCA. It provides a federal mechanism, as required by the Commerce Clause of the Constitution, for interstate electricity regulation. Before this act was passed, electricity generation, transmission and distribution were typically a series of intrastate transactions.

REFERENCES

  1. US Energy Information Administration, State Nuclear Profiles (www.eia.gov/nuclear/state/)

  2. US Energy Information Administration, Impacts of Electric Power Industry Restructuring on the US Nuclear Power Industry, Chapter 2 (www.eia.gov/electricity/archive/0623.pdf)

  3. US Energy Information Administration, Domestic Uranium Production Report (www.eia.gov/uranium/production/annual/index.cfm)

  4. US Energy Information Administration, Uranium Marketing Annual Report (www.eia.gov/uranium/marketing)

  5. US Energy Information Administration, Direct Federal Financial Interventions and Subsidies in Energy in Fiscal Year 2016, April 2018 (www.eia.gov/analysis/requests/subsidy)

  6. US Energy Information Administration, Analysis and Projections (www.eia.gov/analysis/projection-data.php)

  7. US Energy Information Administration, Electricity (www.eia.gov/electricity/reports.php#/T194)

APPENDIX 1: INTERNATIONAL, MULTILATERAL AND BILATERAL AGREEMENTS

Agreements for cooperation provide the legal framework of US trade with other countries in the peaceful uses of nuclear energy. Agreements establish binding national commitments enforceable under international law and set the ground rules for civilian nuclear commerce among States. The guiding principle is that the USA will cooperate in peaceful nuclear trade as long as the other signatories abide by the agreement’s conditions governing the safeguarded and continued peaceful use of nuclear material and technology transferred from the USA, and they grant the USA certain consent rights over such materials’ use, alteration and retransfer.

The USA has entered into agreements with other States for peaceful nuclear cooperation. Similar agreements have been entered into with international organizations, including the European Atomic Energy Community and the IAEA. The USA has also entered into trilateral agreements with the IAEA and other States for safeguards to equipment, devices and materials supplied under bilateral agreements for cooperation in the use of commercial nuclear power.

APPENDIX 2: MAIN ORGANIZATIONS INVOLVED IN NUCLEAR POWER RELATED ACTIVITIES

US Department of Energy, Office of Nuclear Energy (http://energy.gov/ne/office-nuclear-energy)
US Nuclear Regulatory Commission, Document Collections (www.nrc.gov/reading-rm/doc-collections)
Oak Ridge National Laboratory (https://www.ornl.gov/)
Idaho National Laboratory (https://inl.gov/research-programs/nuclear-energy/)
Tennessee Valley Authority (https://www.tva.com/energy/our-power-system/nuclear)
US Environmental Protection Agency, Yucca Mountain Repository (https://www.epa.gov/radiation/what-yucca-mountain-repository)


Coordinator information

US Department of Energy

Energy Information Administration

1000 Independence Avenue, SW

Washington, DC 20585, USA

CNPP Coordinator:

Mr. Slade Johnson, +1-202-586-3945,

slade.johnson@eia.gov