Full Paper
IAEA-CN77
Contents  Return  Previous Page  Next Page  Index


Return To: Session EXP5 - Transport
Prev Page: (EXP5/20) Correlation Between Core and Pedestal Temperatures in
Next Page: (EXP5/22) Enhanced Particle Confinement and Turbulence Reduction Due


(EXP5/21) Progress in Quantifying the Edge Physics of the H-mode Regime in DIII-D

R. J. Groebner1), D. R. Baker1), J. A. Boedo2), K. H. Burrell1), T. N. Carlstrom1), R. D. Deranian3), E. J. Doyle4), J. R. Ferron1), P. Gohil1), G. R. McKee5), R. A. Moyer2), C. L. Rettig4), T. L. Rhodes4), D. M. Thomas1), T. H. Osborne1), and W. P. West1)
 
1) General Atomics, San Diego, California USA
2) University of California-San Diego, La Jolla, California USA
3) Cardiff University, Wales
4) University of California-Los Angeles, Los Angeles, California USA
5) University of Wisconsin-Madison, Madison, Wisconsin USA

Abstract.  Edge conditions in DIII-D are being quantified in order to provide insight into the physics of the H-mode regime. Electron temperature is not the key parameter that controls the L-H transition. Gradients of edge temperature and pressure are much more promising candidates for such parameters. The quality of H-mode confinement is strongly correlated with the height of the H-mode pedestal for the pressure. The gradient of the pressure appears to be controlled by MHD modes, in particular by kink-ballooning modes with finite mode number n. For a wide variety of discharges, the width of the barrier is well described with a relationship that is proportional to ( $ \beta_{\mathrm{p}}^{\mathrm{ped}}$)1/2. An attractive regime of confinement has been discovered which provides steady-state operation with no ELMs, low impurity content and normal H-mode confinement. A coherent edge MHD-mode evidently provides adequate particle transport to control the plasma density and impurity content while permitting the pressure pedestal to remain almost identical to that observed in ELMing discharges.

Read the full paper in PDF format.

IAEA 2001