HUNGARY
(Updated 2020)
PREAMBLE
This report provides information on the status and development of nuclear power programmes in Hungary, including factors related to the effective planning, decision making and implementation of the nuclear power programme that together lead to safe and economical operations of nuclear power plants.
The CNPP summarizes organizational, industrial aspects of nuclear power programmes and provides information about the relevant legislative, regulatory and international framework in Hungary.
Hungary has one nuclear power plant (NPP) with four units that provided half of electricity production in 2019, with one research reactor and one training reactor also in operation. Construction of two new NPP units is planned in order to maintain the capacity of the Paks NPP and to meet future electricity demand.
1. COUNTRY ENERGY OVERVIEW
1.1. ENERGY INFORMATION
1.1.1. Energy policy
In line with the most recent European Union (EU) gas and electricity market directives, all electricity and gas customers have the ability to select their supplier freely as of 1 July 2007. In the same year, the act on electricity (Act No. 86 of 2007) was adopted by the Hungarian Parliament, supporting full liberalization of the electricity market in order to enhance economic competitiveness and to provide sustainable security of supply. The act is also harmonized with the requirements of the EU. Most provisions of the act entered into force in 2007. In the beginning of 2008, the electricity market was fully liberalized. The year 2008 was considered a transition period for the energy market, as players in the market adapted to new rules. Non-residential electricity consumers in Hungary pay for substantial subsidies to renewable sectors through levies on their tariffs. The new premium based renewable support scheme (METÁR) was approved by the Hungarian Parliament in 2016, and it was introduced in 2017.
In February 2008, the National Climate Change Strategy for 2008–2025 was adopted by the Hungarian Parliament. The strategy emphasized the need for increasing energy efficiency, energy savings and the use of renewable energies (including wind, solar, geothermic and biomass). It did not mention nuclear energy. In April 2008, a resolution on a new energy policy for 2008–2020 was adopted by the Parliament, aiming to maintain a balance between security of supply, cost effectiveness, energy efficiency and protection of the environment. According to the resolution, the Government would start preparing the decision on new nuclear capacity for the replacement of existing units. The resolution also stated that the Government should create the necessary conditions for implementation of the programmes aimed at the final disposal of radioactive waste, and that the Government should inform Parliament on the implementation of the energy policy at least every two years and, in case of need, propose review of the policy.
As a major step in the strategic framework, the National Energy Strategy of 2011 provided a roadmap until 2030 and proposed a vision until 2050. Its main priorities were security of supply, competitiveness and sustainability. The most important strategic measures included progress in renewable energy integration, preservation of nuclear generation capacity by lifetime extension and potential new generation capacity, infrastructure and institutional development, and promotion of energy efficiency.
Following a longer period of strategic planning and consultation, the Government of Hungary approved the new National Energy Strategy and National Energy and Climate Plan (through 2030, with an outlook up to 2040) in January 2020 [1]. The revised strategic framework is organized on three strategic pillars: clean, smart and affordable energy. While focusing on energy consumers, the most important strategic objectives include the climate friendly transformation of the energy sector, the further strengthening of security of supply and the promotion of innovation and economic development. The new strategy includes more than 40 strategic measures and foresees a reduction of 95% in greenhouse gas emissions by 2050 (from the 1990 level). Nuclear energy continues to be considered essential to sector integration and to the goal of reaching a climate neutral economy. The preservation of the nuclear generation capacity by the replacement of the existing units at Paks NPP before the end of their lifetime is one of the key strategic measures, aiming for further decarbonization of the electricity sector.
According to the National Policy for the Management of Spent Fuel and Radioactive Waste adopted in April 2015 by the Parliament and the National Programme on the Management of Spent Fuel and Radioactive Waste approved by the Government in 2016, national development goals and objectives relating to spent nuclear fuel and radioactive waste include: development of a national strategy for the back end of the fuel cycle, with due consideration to be given to various options; continuous extension of the spent fuel interim storage facility in Paks; phased implementation of the geological investigation programme of the Boda Claystone Formation aiming at a future deep geological repository; ongoing implementation of the safety enhancement programme at the Radioactive Waste Treatment and Disposal Facility in Püspökszilágy as well as the extension of the National Radioactive Waste Repository (NRWR) in Bátaapáti and optimization of its disposal concept.
Following the accident at the Fukushima Daiichi NPP, all European countries operating NPPs performed a targeted safety reassessment (TSR) — the so called stress test — to meet the request of the European Council. The TSR of the Paks NPP focused on topics specified by the European Nuclear Safety Regulators Group (ENSREG, www.ensreg.eu): issues corresponding to earthquakes, flooding and other external natural hazard factors; the loss of electric power supply and of ultimate heat sink or a combination of those; and severe accident management. In relation to the hazard factors, it was assessed whether the design basis of the plant was duly determined and whether there were sufficient reserves beyond design basis before severe damage occurred. Based on the final report of the Paks NPP submitted to the Hungarian Atomic Energy Authority (HAEA) for regulatory review, the HAEA agreed that the proposed tasks in the report be carried out in order to further improve plant safety and also identified a few additional options. Along with the detailed coverage of the topics specified by ENSREG, the HAEA also established that the national legal requirements for the safety of NPPs are in line with the international standards and best practices. The HAEA submitted the national report with the results of the review to the European Commission at the end of 2011 and published it on its web site. Based on the results of the regulatory review of the TSR, the HAEA concluded that the design basis of the Paks NPP is adequate and complies with the legal requirements and international practice. The safety systems and safety functions satisfy requirements of the design basis. After the last periodic safety review of the Paks NPP, specific safety enhancement measures were implemented, mainly in order to improve the plant’s beyond design basis capabilities. These measures are fully in line with expectations of the TSR as well. It can be concluded that the Paks NPP is safe and no deficiency has occurred. The measures initiated by the last periodic safety review provide robust capabilities for the plant for successful management of severe situations as well. In addition to the positive findings, the TSR identified a number of options and measures to enhance plant safety even further. The HAEA ordered the operator of the plant to develop a detailed programme by the end of the first half of 2012 in order to realize these options.
The National Action Plan of Hungary on the implementation of actions based upon the lessons learned from the Fukushima Daiichi accident was adopted in December 2012. The National Action Plan was prepared in accordance with the recommendations of ENSREG. The implementation of the National Action Plan is currently in progress.
As of 31 December 2019, the status of the implementation of the National Action Plan at the Paks NPP is the following: out of 46 tasks, 41 were completed and 5 were rescheduled by the HAEA in the framework of the periodic safety review.
1.1.2. Estimated available energy
Table 1 shows Hungary’s estimated available energy by source.
TABLE 1. ESTIMATED AVAILABLE ENERGY SOURCES
Fossil fuels | Nuclear | Renewables | ||||
Solid | Liquid | Gas | Uranium | Hydro | Other | |
Total amount* | 10 499.3 | 69.7 | 1641.5 | 31.5 | ||
Total amount in exajoules (EJ) | 0.016 | 60.110 |
Source: Fossil Fuels and Nuclear, 1 Jan. 2019: Mining and Geological Survey of Hungary.
* Solid (coal), liquid — million tonnes; gas — billion m3; uranium ore — million tonnes.
In 2019, liquid (both crude oil and condensate) production was 0.93 million t. Hydrocarbon gas amounted to 1.91 billion m3. As of 1 January 2019, Hungary’s estimated coal resources were nearly 10.5 billion t. The bulk of this resource is lignite, with 5.7 billion t, followed by 3.2 billion t of brown coal and 1.6 billion t of hard coal. Hungary produced about 6.85 million t of coal in 2019. Generally, the coal found in Hungary has low calorific value with high ash and sulphur content. The vast share of coal is used for power generation. In 1997, the uranium mine was closed and production ceased. Remediation activities at the site began the following year and were completed in 2008. Ongoing treatment of contaminated water from the mine and tailings ponds results in the collection of about 1–3 tU per year.
1.1.3. Energy statistics
Table 2 contains energy statistics for Hungary.
TABLE 2. ENERGY STATISTICS (EJ)
2000 | 2010 | 2015 | 2018 | 2019 |
Annual av. growth rate 2010–2019 (%) | |
Total energy consumptiona | 1.055 | 1,120 | 1,064 | 1,125 | 1,108 | -0,1 |
Solidsb | 0.160 | 0,114 | 0,099 | 0,088 | 0,080 | -3,9 |
Liquids | 0.330 | 0,284 | 0,294 | 0,339 | 0,336 | 1,9 |
Gases | 0.377 | 0,411 | 0,314 | 0,346 | 0,353 | -1,7 |
Nuclear (electricity) | 0.141 | 0,172 | 0,173 | 0,172 | 0,178 | 0,4 |
Hydro (electricity) | 0.001 | 0,001 | 0,001 | 0,001 | 0,001 | 0,0 |
Wind (electricity) | 0.000 | 0,002 | 0,003 | 0,002 | 0,003 | 4,6 |
Primary electricity (net import) | 0.010 | 0,019 | 0,049 | 0,052 | 0,045 | 10,1 |
Other renewables and wastes | 0.033 | 0,117 | 0,131 | 0,125 | 0,112 | -0,5 |
Total energy production | 0.485 | 0,497 | 0,472 | 0,461 | 0,447 | -1,2 |
Solidsb | 0.121 | 0,067 | 0,064 | 0,048 | 0,042 | -5,1 |
Liquids | 0.070 | 0,046 | 0,036 | 0,046 | 0,045 | -0,2 |
Gases | 0.104 | 0,094 | 0,057 | 0,061 | 0,055 | -5,8 |
Nuclear | 0.155 | 0,172 | 0,173 | 0,172 | 0,178 | 0,4 |
Hydro | 0.001 | 0,001 | 0,001 | 0,001 | 0,001 | 0,0 |
Wind | —c | 0,002 | 0,002 | 0,002 | 0,003 | 4,6 |
Other renewables and wastes | 0.035 | 0,116 | 0,139 | 0,131 | 0,123 | 0,7 |
Net imports (imports - exports) | 0.570 | 0.633 | 0,568 | 0,649 | 0,768 | 2,2 |
Stock changes (opening - closing stock) | -0.01 | 0,021 |
0,014 | -0,107 |
- |
Source: Latest available data from the Hungarian Energy and Public Utility Regulatory Authority, Directorate of Analysis and Statistics.
a Energy consumption = Primary energy production + net imports (imports - exports) of secondary energy + stock change.
b Solid fuels include coal, lignite.
c —: data not available.
1.2. THE ELECTRICITY SYSTEM
1.2.1. Electricity system and decision making process
The liberalization of Hungary’s electricity market was completed in 2008. Today, the free choice of energy supplier applies to every consumer, although prices in some segments are still regulated within the ‘universal service. As provided for by Directive 2009/72/EC of the European Parliament and of the Council of 13 July 2009 concerning common rules for the internal market in electricity and repealing Directive 2003/54/EC, universal service is the right to be supplied with electricity of a specified quality within their territory at a reasonable, easily and clearly comparable, transparent and non-discriminatory price. End user prices that are regulated by the Government are sometimes significantly cheaper than non-regulated prices — at least in cases of household customers. Apart from this, as far as EU legislation is concerned, the application of the 3rd Energy Package was carried out and the new EU network code rules were implemented.
The installed capacity of domestic power plants on 31 December 2019 was 9852 MW(e) (preliminary data). The peak load of Hungary’s electricity system was 7105 MW in 2019, an increase of 236 MW compared to 2018 (6869 MW). Though the increase in energy efficiency may help to reduce the rate of increase of primary energy consumption, it is still expected that overall electricity demand will increase. Taking into account the necessary shutdown of old fossil fuel power plants in the near future, new generation capacities may be required in the coming decade, despite the solar photovoltaic boom currently taking place in Hungary, with more than 3000 MW of expected capacity to be installed within the next 2–3 years.
The electricity generation mix of the Hungarian electricity system is presently well balanced, with about 25% generated from gas, 48% from nuclear, 12% from coal and lignite and an increasing ratio of renewables (from 12% to 13%). The electricity production from renewable energy sources is growing in accordance with the EU directive on green electricity. In 2019, renewable based electricity production made up a share of 13% of gross electricity production, and it is expected to rise steeply in the next few years owing to the various forms of support for renewable energy sources of electricity.
Hungary’s energy supply is around 69% import dependent (based on 2019 data); therefore, its security is a crucial priority of the National Energy Strategy [1]. The safe, successful and profitable operation of the state owned Paks NPP greatly contributes to meeting this challenge. The obligatory stockpiling of nuclear fuel for two years is also an essential element in ensuring the stability of supply in case of any disturbances in imports.
In Hungary, the only transmission system operator is MAVIR, which operates as an independent member of the state owned MVM Group in accordance with the independent transmission operator model. Thus, being a company independent of any other participants of the energy industry, MAVIR ensures the operation of the whole electricity transmission system in a way that each of its players may deploy their services on an equal basis. In addition, there are six distribution system operator companies operating in Hungary, all of them according to the strict unbundling rules of the Third Energy Package of the European Union. Although almost all residential customers are supplied within universal service, intense competition can be observed on the non-household electricity market.
In Hungary, the Government and the national regulatory authority, the Hungarian Energy and Public Utility Regulatory Authority (HEA), shape the legislative environment for electricity. The energy policy belongs to the Government, where currently the Ministry of Innovation and Technology is responsible for the country’s energy strategy and the development of policies relating to renewable energy, energy efficiency and decarbonization.
The HEA regulates and supervises the activities of electricity, natural gas, district heating and water public utility companies, leading national competence regarding price regulation of waste management, energy statistics and consumer protection. However, the most important responsibilities of the HEA include the following:
Issuing decrees (determining the network access and network usage fees for both the electricity and gas transmission and distribution systems, determining the conditions and rules for the application of such fees);
Issuing, amending or withdrawing the authorizations required for performing activities regarding electricity, gas, district heating and water public utility;
Approving commercial codes, operational network codes (transmission system operator, distribution system operator), network development plan (transmission system operator), business codes (traders, generators) and market rules of the exchanges;
Monitoring compliance with the obligations of the licensees, the execution of cross-border transmission of electricity and gas, competition in the electricity and gas markets (including the balancing market) in the course of market surveillance activities, and performance of market analysis and regulatory inspections;
Making preliminary proposals for the regulations relating to the pricing mechanisms of universal services;
Resolving complaints lodged against authorized operators (shared competence with the Authority for Consumer Protection).
In addition to classic regulatory tasks mentioned above, the HEA is also responsible for managing applications for different renewable energy source electricity supporting regimes, as well as for the controlling of implementing energy efficiency measures in case of organizations concerned by relevant legislation. The HEA is a legal entity with a separate and independent budget, reporting on an annual basis to Parliament on its activities. Its president is appointed by the Prime Minister for seven years, which may be extended once for an additional seven years.
1.2.2. Structure of electric power sector
Today, the power industry is restructured and partly privatized. Figure 1 shows the simplified model of Hungary’s electricity industry.
FIG. 1. Hungarian electricity industry as of 2020.
1.2.2.1. MVM Hungarian Electricity
The MVM Group is Hungary’s third largest group of companies. It employs more than 15 000 people across about 15 countries, with operations covering the entire domestic energy system. At the same time, as a dynamic, innovative energy group, it is the largest energy knowledge centre in Hungary and contributes greatly to Hungary’s security of supply. Its main task is to provide electricity and natural gas to Hungary’s population and businesses in a cheap and reliable manner.
With the merger of the MVM and NKM National Utilities, a holding company operating as the largest domestic industry knowledge centre was established. The MVM Group has become an indispensable market player, which supplies energy to retail customers and serves customers in nuclear, natural gas and solar energy based electricity generation. With the addition of NKM National Utilities, the MVM Group serves more than 4 million customers.
Among others, the MVM Group treats the following as priorities: the operation and continual development of the transmission network, the professional provision of natural gas trading and storage services, e-mobility, the development of smart city technologies and the provision of advanced telecommunications solutions for the Government (see Fig. 2).
FIG. 2. The structure of the MVM Group.
In addition to the companies listed in Table 3, there are an additional 200 companies that operate more than 300 (small) power plants under 50 MW capacity.
TABLE 3. COMPANIES OPERATING POWER PLANTS OF 50 MW OR HIGHER CAPACITY
* The application for extension suspension was approved by the Hungarian Energy and Public Utility Regulatory Authority in its Resolution No. 4723/2016 and remained in force until 30 September 2019, after which authorization for the resumption of the suspended electricity generation activity was received through Resolution No. 2484 /2019.
** With Resolution No. 6549/2015 of the Hungarian Energy and Public Utility Regulatory Authority on suspension of electricity generation, in force until 31 December 2018, the four units with 60 MW installed capacity of Vértes Power Plant were put into “constant non-operational” status as from 1 January 2016.
1.2.2.2. Transmission operator
In Hungary, high voltage electricity is transmitted on a single common transmission line network, which is owned and operated by the MVM Group member MAVIR (www.mavir.hu). This organization operates according to the independent transmission operator model, independent of other economic operators that use the transmission network, and its independence is assured by legislation. In accordance with the relevant statutory regulations, MAVIR, as an organization independent of other participants in the electricity system, is responsible for ensuring a secure energy supply.
1.2.2.3. Electricity distribution
There are six regional distribution companies responsible for operating networks with a voltage of 120 kV and below, as well as supply for customers (see Table 4).
TABLE 4. SIX REGIONAL DISTRIBUTION COMPANIES
1.2.3. Main indicators
Table 5 contains information about electricity production, consumption and capacity, and Table 6 shows energy related ratios.
TABLE 5. ELECTRICITY PRODUCTION, CONSUMPTION AND CAPACITY
2000 | 2010 | 2015 | 2018 | 2019 |
Annual av. growth rate 2010–2019 (%) | |
Capacity of electrical plants (GW(e)) | ||||||
Total | 8.29 | 8.99 | 8.63 | 9,25 | 9,85 | 1,0 |
Thermala | 6.32 | 6.13 | 5.56 | 5,63 | 5,63 | -0,9 |
Hydro | 0.05 | 0.05 | 0.06 | 0,06 | 0,06 | 2,0 |
Nuclear | 1.85 | 2 | 2.00 | 2,01 | 2,01 | 0,1 |
Wind | 0 | 0.29 | 0.33 | 0,33 | 0,32 | 1,1 |
Geothermal | 0 | 0 | 0.00 | 0,00 | 0,00 | |
Other renewablec | 0.02 | 0.52 | 0.69 | 1,21 | 1,82 | 14,9 |
Electricity production (TW·h) | ||||||
Totald | 35.2 | 37.37 | 30.36 | 32,01 | 33,94 | -1,1 |
Thermala | 20.77 | 18.59 | 11.30 | 12,52 | 13,15 | -3,8 |
Hydro | 0.18 | 0.19 | 0.23 | 0,22 | 0,22 | 1,6 |
Nuclear | 14.18 | 15.76 | 15.83 | 15,73 | 16,29 | 0,4 |
Wind | 0 | 0.53 | 0.69 | 0,61 | 0,73 | 3,6 |
Geothermal | 0 | — | 0.00 | 0,01 | 0,02 | |
Other renewablec | 0.07 | 2.30 | 2.30 | 2,91 | 3,53 | 4,9 |
Total electricity consumption (TW·h)e | 38.63 | 42.57 | 44.05 | 46,35 | 46,52 | 1,0 |
Sources: Latest available data from Hungarian Power Companies; and Hungarian Energy and Public Utility Regulatory Authority (only data for 2015, 2018, 2019).
a Only fossil fuel, and non-renewable municipal waste and industrial waste.
b —: data not available.
c Renewable combustible fuel and solar.
d Electricity transmission losses are not deducted.
e Gross production + imports - exports.
TABLE 6. ENERGY RELATED RATIOS
2000 | 2010 | 2015 | 2018 | 2019 | |
Energy consumption (GJ/capita) | 103 | 112 | 107.0 | 115.1 | 113.3 |
Electricity consumption (kW·h/capita) | 3779 | 4251 | 4325 | 4742 | 4760 |
Electricity production/Energy production (%) | 26.0 | 27.1 | 23.1 | 24.9 | 27.4 |
Nuclear/Total electricity (%) | 40.3 | 42.2 | 52.2 | 49.2 | 48.0 |
Ratio of external dependency (%)* | 54.0 | 56.5 | 53.4 | 57.7 | 69.4 |
Source: Latest available data from Hungarian Energy and Public Utility Regulatory Authority.
* Net import/Total energy consumption.
2. NUCLEAR POWER SITUATION
2.1. HISTORICAL DEVELOPMENT AND CURRENT ORGANIZATIONAL STRUCTURE
2.1.1. Overview
Hungary’s first reactor was built for research purposes in 1959 at Csillebérc, on the outskirts of Budapest. The reactor, of Soviet origin and refurbished by experts in Hungary after 30 years of operation, was again put into operation by the Atomic Energy Research Institute in 1993. The Budapest Research Reactor is a tank type reactor with 10 MW(th) capacity and is operated by the Centre for Energy Research, functioning in the framework of the Eötvös Loránd Research Network.
The Training Reactor of the Institute of Nuclear Techniques of the Budapest University of Technology and Economics (BME NTI) was put into operation in 1971. Since then, the training reactor has been used mainly for the purposes of education in the nuclear field. It is a pool type reactor with 100 kW(th) capacity.
The Paks NPP has four WWER-440/213 second generation units. Owing to successful upgrades in the past, the nominal electrical output of the units are 508.6 MW, 504.2 MW, 500 MW and 500 MW, respectively. The plant is located 5 km south of the town Paks. Since 1980, the four units have played a key role in Hungary’s power system.
Hungary’s national policy concerning the application of atomic energy is regulated by law. The basic purposes of the Act on Atomic Energy are those of protecting the health and safety of the population and protecting the environment. The provisions of the act state that the use of atomic energy is allowed only in a manner stipulated in law and under the permanent control of the competent authority. Regardless of what aspect of atomic energy is being considered, safety is a prevailing priority.
2.1.2. Current organizational structure
2.1.2.1. Governmental organizations in the nuclear field
Following the Hungarian parliamentary elections of 2018, the newly established Ministry for Innovation and Technology (www.kormany.hu/en/ministry-for-innovation-and-technology) was made responsible for energy affairs and climate policy development. In this role, the Minister of Innovation and Technology exercises legal supervision over the HAEA, with regard to the fact that the independence of the HAEA in the course of its regulatory decision making proceedings is guaranteed by the Act on Atomic Energy.
A new minister without portfolio (functionally separate and independent from other ministries) was appointed, responsible for the management of national assets (i.e. exercising the ownership rights over the MVM Paks NPP Ltd.). In addition, in 2017 the minister without portfolio responsible for the planning, construction and commissioning of the two new units at the site of the Paks NPP was appointed.
The Ministry of Human Capacities undertakes the tasks of the authority regarding radiation protection as it pertains to medical irradiation.
The Ministry of Agriculture is responsible for establishing air and water quality standards, and limits on radioactive releases from nuclear facilities, as well as controlling emissions at the facilities in relation to the environment.
2.1.2.2. Regulatory body
The HAEA is a central public administration body acting in the field of peaceful applications of atomic energy, with a specified scope of tasks and authority, and organizational and financial independence. Establishing regulatory duties in connection with the safety of the peaceful application of nuclear energy, particularly the safety of nuclear facilities under normal and accident conditions and safety in nuclear emergencies, is a basic task of the HAEA. Acting independently under supervision of a minister appointed by the Prime Minister, the HAEA is primarily concerned with ensuring nuclear safety in accordance with the law. From 2018, the Minister for Innovation and Technology is responsible for the supervision of HAEA activities. The director general of the HAEA is appointed by the Prime Minister. The HAEA resolutions can only be appealed and amended in court.
2.1.2.3. Licensees
MVM Paks NPP Ltd (www.npp.hu) operates four WWER-440/213 type power reactors.
The goal of Paks II Ltd (www.paks2.hu) is to perform tasks involving the preparation, establishment, commissioning and operation of new NPP units at a high professional standard.
The Public Limited Company for Radioactive Waste Management (PURAM, www.rhk.hu/en) operates: the Spent Fuel Interim Storage Facility (SFISF) at Paks; the Radioactive Waste Treatment and Disposal Facility at Püspökszilágy, managing low and intermediate level waste (LILW) generated by medical, industrial and research applications; and the NRWR in Bátaapáti, a final disposal facility for LILW generated at the Paks NPP. PURAM is investigating the Boda Claystone Formation in West Mecsek to select a site for high level and long lived radioactive waste.
2.1.2.4. Research institutions
The Centre for Energy Research was established in January 2012 by two former independent institutions, the Institute of Isotopes and the KFKI Atomic Energy Research Institute, and operated until 1 September 2019 under the Hungarian Academy of Sciences. It now functions under the framework of the Eötvös Loránd Research Network (www.energia.mta.hu).
The Centre operates the 10 MW(th) Budapest Research Reactor, which is active in several fields of nuclear technology, such as reactor physics, thermohydraulics, health physics, simulator techniques and reactor chemistry. It performs a wide variety of research related to the use of radioactive materials and nuclear techniques, among them an R&D development programme for nuclear safeguards. It provides expert support and laboratory equipment for the HAEA. The forensic nuclear laboratory is the result of unique cooperation between the IAEA and a research institute, providing the HAEA with useful information on nuclear security. Research proposals of the experts of the centre support the HAEA in different fields.
In December 2016, the IAEA appointed the Centre for Energy Research ( EK) as the Collaborating Centre of the IAEA for Nuclear Forensics in Hungary.
The Institute of Nuclear Research (ATOMKI, Debrecen) operates a 20 MeV cyclotron and a 5 MeV Van de Graaff accelerator, and is active in several fields of nuclear physics and nuclear techniques (www.atomki.hu). The ATOMKI operated until 1 September 2019 under the Hungarian Academy of Sciences, and is now functioning under the framework of the Eötvös Loránd Research Network.
The National Public Health Centre (NPHC) was established on 1 October 2018, merging several national institutions working on various fields of public health. The Department of Radiobiology and Radiohygiene (DRR) of NPHC performs a wide spectrum of research, including on the biological and therapeutic effects of radiation. The Accredited Testing Laboratory of DRR can perform basic radioactivity measurements of food and feed, as well as measurements in air, water and soil. DRR is responsible for the quality tests of radiating medical equipment and for the national radon action plan. DRR plays an important role in the development of the national nuclear emergency response plans and in aiding the diagnosis and treatment of radiation injuries, and operates the National Radiohygiene Emergency Service, which operates on 24 hour duty and responds to calls regarding radiation situations.
The Nuclear Safety Research Institute (NUBIKI) carries out safety analysis and risk assessment of nuclear power plants, including level 1 and 2 probabilistic safety assessment and severe accident analysis (www.nubiki.hu).
The BME NTI operates a training reactor; teaches nuclear technology for engineers, physicists, chemists and environmentalists; and performs research on different nuclear related topics (www.reak.bme.hu).
The Power Engineering and Contractor Co., Pöyry Eroterv Co. (before 2010: ETV-EROTERV Co., Budapest) works in the fields of design, construction, commissioning and operating management of nuclear facilities. Its activities include waste management (treatment, storage and disposal) (www.poyry.hu).
The Department of Nuclear Medicine of the University of Debrecen (www.pet.dote.hu) operates a GE PETtrace cyclotron and a radiochemistry centre, which develop and produce positron labelled radiopharmaceuticals for medical and research purposes.
The Institute of Radiochemistry and Radioecology at the University of Pannonia has a wide range of topics in research and education in two main fields: radiochemistry and nuclear technology, as well as radioecology and radiation protection (https://mk.uni-pannon.hu/index.php/institute-of-radiochemistry-and-radioecology.
2.2. NUCLEAR POWER PLANTS: STATUS AND OPERATIONS
2.2.1. Status and performance of nuclear power plants
Table 7 shows the status and performance of the nuclear power plants in Hungary.
TABLE 7. STATUS AND PERFORMANCE OF NUCLEAR POWER PLANTS
Reactor Unit | Type | Net Capacity [MW(e)] |
Status | Operator | Reactor Supplier |
Construction Date |
First Criticality Date |
First Grid Date |
Commercial Date |
Shutdown Date |
UCF for 2019 |
PAKS-1 | PWR | 479 | Operational | PAKS Zrt | AEE | 1974-08-01 | 1982-12-14 | 1982-12-28 | 1983-08-10 | 99.7 | |
PAKS-2 | PWR | 477 | Operational | PAKS Zrt | AEE | 1974-08-01 | 1984-08-26 | 1984-09-06 | 1984-11-14 | 92.0 | |
PAKS-3 | PWR | 473 | Operational | PAKS Zrt | AEE | 1979-10-01 | 1986-09-15 | 1986-09-28 | 1986-12-01 | 92.4 | |
PAKS-4 | PWR | 473 | Operational | PAKS Zrt | AEE | 1979-10-01 | 1987-08-09 | 1987-08-16 | 1987-11-01 | 82.8 |
Data source: IAEA - Power Reactor Information System (PRIS). | |||||||||||
Note: Table is completely generated from PRIS data to reflect the latest available information and may be more up to date than the text of the report. |
Note: AEE — XXX; constr — construction; PWR — pressurized water reactor.
The Paks NPP generated 16 288 GW·h of electric energy in 2019, which represents 49.2% of the gross domestic electricity production of Hungary. This amount was generated by Units 1–4, respectively, as follows: 4 431.4 GW·h; 4 090.86 GW·h; 4 125.02 GW·h; 3 640.45 GW·h. The amount of electricity that has been generated by the Paks NPP since the date of the first connection of Unit 1 to the grid was higher than 493.622 TW·h at the end of 2018.
2.2.2. Plant upgrading, plant life management and licence renewals
The Paks NPP consists of four WWER-440/213 type reactor units, originally designed to produce 1375 MW(th) and 440 MW(e) each. Earlier upgrades of the secondary circuit and turbine increased the electrical output to about 470 MW(e) in each unit, with no change to thermal capacity. An upgrade of the primary side was completed that increased the nominal power by 8% to 1485 MW(th), resulting in about 500 MW(e) of power generation by each unit. By the end of 2009, the uprating process was completed successfully on all four units, and 2010 was the first year the units operated at the increased power level. A recent upgrade of the turbines enables the units to reach over 500 MW(e); owing to turbine reconstruction, with stage installations added in the high pressure cylinders of the turbines on all units, the nominal outputs of the units are now 508.6 MW, 504.2 MW, 500 MW and 500 MW, respectively.
At the end of 2008, the Paks NPP submitted a lifetime extension programme to the HAEA to justify the establishment of the operating conditions and safe operation beyond the design lifetime. The HAEA evaluated the programme and ordered the licensee to implement the programme with certain conditions. The HAEA regularly reviews and evaluates the progress reports of the lifetime extension programme. The HAEA granted an operating licence for all units for an additional 20 years, subject to the periodic safety assessment of the units. The validity of the new operation licenses was requested to be the same as licenses during lifetime extension, that is: Unit 1 until 31 December 2032, Unit 2 until 31 December 2034, Unit 3 until 31 December 2036, and Unit 4 until 31 December 2037.
The HAEA issued a licence to introduce a 15 month operation interval at Units 1–4 of the Paks NPP, and as a preliminary measure, to implement a new type of fuel assembly with a mean enrichment of 4.7%. The modification of the licence regarding the new 15 month operating cycle was issued by the HAEA on 14 October 2019.
2.2.3. Permanent shutdown and decommissioning process
Not applicable.
2.3. FUTURE DEVELOPMENT OF NUCLEAR POWER
2.3.1. Nuclear power development strategy
The construction of new units at the Paks site was proposed in order to meet future electricity demand. The recently adopted National Energy Strategy and National Energy and Climate Plan through 2030, yet with an outlook up to 2040 [1], foresee the long term preservation of nuclear power in the energy mix.
Under Hungary’s Act on Atomic Energy, the Government would need to obtain a decision in principle from Parliament in order to start any preparatory activity that could lead to the construction of a new nuclear installation. On 30 March 2009, members of the Hungarian Parliament gave its decision in principle, with more than 90% of the votes in support of it.
After this, preparation for the construction of the new units commenced. The activities included preparations for obtaining environmental and site licences. A survey was also initiated to determine the possible suppliers for the construction of the new units and the demand for the necessary labour.
In order to prepare the planned new units, the MVM Group established its new project company, MVM Paks II Nuclear Power Plant Development Ltd (MVM Paks II. Ltd.)in 2012. Since November 2014, owing to a change in ownership, the project company no longer belongs to the MVM Group, its name is Paks II. Ltd. It came under direct state control when the Prime Minister’s office obtained the owner’s rights in 2014. Since 3 May 2017, the project company’s ownership rights and obligations have been exercised by the minister without portfolio responsible for the planning, construction and commissioning of the two new units at the Paks NPP.
2.3.1.1. Update of the Nuclear Safety Regulation
The HAEA started preparations for the licensing of the new units by reviewing four important areas: regulatory requirements, the licensing framework, technological and safety characteristics of possible new units and the international framework. The most important goal of the HAEA is to adopt the strictest requirements set by the latest findings of science and technology. As part of the review process, the representatives of the nuclear industry, the HAEA and the Hungarian National Standard Committee agreed on the promulgation of a series of international standards specific to NPPs to cover the necessary technical fields for which Hungarian National Standards were not available. The first series of standards covering the principles of instrumentation, control room and emergency control room design, display of safety parameters, detection of leakages and loose parts in the primary circuit, neutron flux monitoring, radiation monitoring and alarming were published as Hungarian National Standards in January 2011.
According to the Act on Atomic Energy, the safety requirements for use of nuclear energy are to be regularly reviewed and modernized, taking into account the achievements of ongoing scientific and international experience. As a result of the review, Government Decree No. 118 of 2011 (VII. 11) on nuclear safety requirements of the nuclear facilities and on the related legal activities was issued and entered into force on 10 August 2011. The reviewed Nuclear Safety Code was published in annexes to the Government decree.
The requirements related to the new nuclear facilities were elaborated (Vol. 9 of the Nuclear Safety Code) and the extended set of regulations entered into force on 1 April 2012 by the Government Decree No. 37 of 2012 (III. 9).
Based on the nuclear safety codes in the field of nuclear safety, it is mandatory to present an independent technical expert’s opinion with the licence applications. The registration and evaluation process for these technical experts is regulated in the Act on Atomic Energy (Act No. 116 of 1996) and its implementation decree (Government Decree No. 247 of 2011).
Comprehensive modification of the Nuclear Safety Code was undertaken in the second half of 2014, covering the results of the revision of the Western European Nuclear Regulators Association (WENRA) requirements, and also the results of other countries’ NPP construction experience, including relevant Finnish and UK regulations and also Hungary’s licensing experience.
In order to be prepared for the construction of new NPP units, Vol. 3/A of the Nuclear Safety Code, on nuclear safety requirements to be applied during the design, was published in 2015.
In addition to the continual development of IAEA recommendations and WENRA reference levels, the Hungarian regulations are reviewed and revised more frequently than the five year review period stipulated by law.
The latest five year review of the Nuclear Safety Code was carried out in 2017–2018. New rules were built in by Government Decree No. 70 of 2018 (IV. 9.), meaning a comprehensive amendment of Government Decree No. 118 of 2011 (VII. 11).
In 2017–2018, regulatory harmonization was also undertaken. On the one hand, Government Decree No. 457 of 2017 (XII. 28) made the appropriate changes in order to fit in the introduced general administrative regime. On the other hand, Government Decree No. 28 of 2018 (II. 28) ensures compliance with Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionizing radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom [2].
2.3.1.2. Establishment of the contractual and legal framework of the new build project
In January 2014, the Government of Hungary signed a bilateral agreement (intergovernmental agreement, IGA) with the Russian Federation on cooperation in the peaceful use of nuclear energy. The agreement was promulgated in Act No. 2 of 2014. The agreement covers, among other topics, the cooperation necessary for maintaining the capacity of the Paks NPP, which means the planning and construction of two new nuclear units at the Paks site. In accordance with the IGA, on 28 March 2014, the Government of Hungary and the Government of the Russian Federation signed an agreement on the provision of a state credit (financial IGA, FIGA) of maximum €10 billion to Hungary to finance 80% of the project (for funding details, see Section 2.3.2). This agreement was promulgated in Act No. 24 of 2014.
Also in 2014, the Hungarian nuclear licensing regulatory framework was revised, modernized and made fit for instant licensing procedures. As a result, Act No. 7 of 2015 (Project Act) was adopted by the Parliament and the licensing and investment environment of the project was successfully created. The new rules include an extension of the staff and the remuneration of the main licensing authority (HAEA) and an increase of the timeframe available for the HAEA to evaluate the construction licensing documentation from 6 months to 18 + 3 or 12 + 12 + 3 months.
A Government commissioner was also assigned by Government Resolution No. 1358 of 2014 (VI. 30) to supervise and support the project from 1 July 2014. Starting in November 2014, MVM Paks II Ltd was under direct state ownership and was controlled by the minister leading the Prime Minister’s office. Since 3 May 2017, MVM Paks II Ltd’s ownership rights and obligations have been exercised by the minister without portfolio responsible for the design, construction and installation of the two new NPP units of Paks.
After negotiations in the second half of 2014, MVM Paks II Ltd and the Russian Joint Stock Company Nizhny Novgorod Engineering Company Atomenergoproekt (JSC-NIAEP) signed three implementation agreements on 9 December 2014. These agreements include: (i) the engineering, procurement and construction contract (EPC) for two WWER-1200 type new nuclear units; (ii) an operation and maintenance support contract; and (iii) a nuclear fuel supply contract. In April 2015, the Euratom Supply Agency co-signed the nuclear fuel supply contract. On 1 January 2015, the implementation of the EPC began. With the IGAs and the implementation agreements, the project’s fundamental elements — its contractual framework — were established.
From November 2015 to April 2017, more investigations were conducted by the European Commission. During this period, the implementation of the EPC was suspended by the European Commission. After having closed the last investigation regarding the state aid for the Paks II project, the standstill ended.
Given the fact that a new administrative regime came into force on 1 January 2018 (Act No. 150 of 2016 on General Administrative Regulations), it was necessary to adapt the Act on Atomic Energy to the aforesaid law. In the light of the above, Act No. 50 of 2017 has made the necessary amendments to the Act on Atomic Energy.
In accordance with the provisions in force, the procedural timeframe available for the HAEA to evaluate the construction licensing documentation is 12 months, which in justified cases may be extended by three months.
Amendments of Act No. 45 of 2018 on the modification of the Act on Atomic Energy are related to the independent technical experts and expert organizations.
The purpose of Act No 39 of 2019 on the Amendment to the Act on Atomic Energy was to comply with Act No. 150 of 2016 on General Public Administration Procedures and to establish procedural issues not covered by the Act on General Public Administration Procedures.
2.3.1.3. Ongoing licensing and pre-construction work
The preparations for construction of the new units are coordinated by Paks II Ltd and the minister without portfolio responsible for the design, construction and installation of the two new NPP units of Paks.
On 27 February 2018, Paks II Ltd officially handed over the work area to the main contractor, ASE Engineering Company belonging to the Rosatom Group, for the construction of the first construction support base facilities. The construction work on the first construction support base facilities started with the administrative and amenity buildings on 20 June 2019.
One of the tasks of the Paks II Ltd is to provide electricity for the contractor for construction–installation works. In order to fulfil the task, a 22/11 kV transformer station is needed for the construction support base area. Work on this project started in spring 2018 and was completed in the first half of 2019. Construction of other utility connection points also started.
The compilation of the construction licence application was (and still is) one of the most important tasks of 2019. In accordance with the terms of the site licence, Paks II Ltd keeps HAEA informed regularly (monthly) about the planning activities and the works related to the facility.
Compliance with terms determined by the environmental licence related to the construction phase was in progress, including carrying out accredited air quality protection measurements and noise protection plans, and preserving protected animal and plant species.
In the preliminary electricity licence for power plant implementation, the Hungarian Energy and Public Utility Regulatory Authority defines the technical requirements for the Paks II project as having to satisfy the requirements of secure and safe operations, in addition to balancing the electricity system and other conditions, which must be met for the issuance of the electricity implementation licence in the interests of operational safety and security of supply. In accordance with the terms of this preliminary license, Paks II Ltd regularly informed the Hungarian Energy and Public Utility Regulatory Authority through biannual summaries regarding the current status and progress of the project.
TABLE 8. PLANNED NUCLEAR POWER PLANTS
Station/project name | Type | Capacity (MW(e)) | Expected construction start year | Expected commercial year |
Paks 5 | WWER-1200 | 1200 | n.a. | n.a. |
Paks 6 | WWER-1200 | 1200 | n.a. | n.a. |
Note: n.a. — not applicable; WWER — water cooled, water moderated power reactor.
2.3.2. Project management
The delivery of the new nuclear power plant units will be a turnkey project. The preparations for construction of the new units are being coordinated by the Paks II Ltd and the minister without portfolio responsible for the planning, construction and commissioning of the two new blocks at the Paks NPP.
2.3.3. Project funding
According to the FIGA, the Russian Federation grants Hungary a maximum of €10 billion credit, which will finance 80% of the contract price of the EPC. Hungary will finance 20% of the contract price. It is also on the agenda to amend the FIGA of the Paks II investment to align the agreement with the new target dates. Paks II Ltd and the Russian Federation are also considering additional technical solutions owing to the water status of the Danube, climate change considerations and the rise of summer water temperatures.
Conditions of the credit line available to the Hungarian state as set out in the FIGA are as follows:
Credit amount: 80% of the agreed amount of the EPC, maximum €10 billion.
Repayment period: 21 years:
Years 1–7: 25% of the whole amount;
Years 8–14: 35% of the whole amount;
Years 15–21: 40% of the whole amount.
Interest rate:
During the investment period: 3.95%;
First seven years of repayment: 4.50%;
Second seven years of repayment: 4.80%;
Third seven years of repayment: 4.95%.
Commitment fee: 0.25% of the undisbursed amount from the preliminarily agreed annual credit line.
2.3.4. Electricity grid development
A new high voltage substation and a new double circuit overhead line of 400 kV are planned to be constructed. In order to provide increased reliability, the new substation and the substation of the existing nuclear power plant will be connected by means of two coupling lines of 400 kV.
2.3.5. Sites
The planned installation site of the new Paks II NPP units is situated in the area neighbouring the Paks NPP. The site is located in Tolna County, about 118 km south of Budapest. The construction area lies 5 km south of the centre of Paks, 1 km west of the River Danube and 1.5 km east of Main Road No. 6.
2.4. ORGANIZATIONS INVOLVED IN THE CONSTRUCTION OF NUCLEAR POWER PLANTS
The primary organizations in the construction of nuclear power plants in Hungary are Paks II Ltd (www.paks2.hu/en/web/paks-2-en/) and the Atomstroyexport Engineering Company (www.atomstroyexport.ru/wps/wcm/connect/ase/eng).
2.5. ORGANIZATIONS INVOLVED IN THE OPERATION OF NUCLEAR POWER PLANTS
MVM Paks Nuclear Power Plant Ltd is a state owned company. MVM Hungarian Electricity holds 100% of the shares (with authority granted by the State). The operator is the MVM Paks Nuclear Power Plant. The technical support organizations (TSOs) are listed in Section 2.1.2 (current organizational chart).
2.6. ORGANIZATIONS INVOLVED IN THE DECOMMISSIONING OF NUCLEAR POWER PLANTS
For decommissioning, a multistep licensing procedure is established, in which the first step is to obtain the authorities’ consent to terminate operation. A further requirement is a valid environmental protection licence based on an environmental impact assessment and public hearings. As in all phases of the life cycle of a facility, radiation protection authorities are involved in these licensing procedures, and they licence the appropriate radiation protection programme and radiation protection organization separately.
During the dismantling, decontamination and other steps, an ongoing task of the authority is the control of the radiation situation within the facility and around it, including the monitoring of personal doses and discharges, as well as of the radiation in the environment. Emergency plans have to be updated with new or likely scenarios and any necessary organizational changes must be adjusted accordingly.
PURAM is a 100% state owned, non-profit enterprise, which was established by the director general of the HAEA on behalf of the Government. Its tasks, as set out by the Act on Atomic Energy, include the final disposal of radioactive waste, the interim storage of spent fuel, the closure of the nuclear fuel cycle and the decommissioning of nuclear installations. The ownership of PURAM (previously exercised by the HAEA) was transferred to Hungarian National Asset Management at the end of 2013, but the regulatory tasks remained among the responsibilities of the HAEA.
2.7. FUEL CYCLE, INCLUDING WASTE MANAGEMENT
2.7.1. Fuel cycle
Hungary has 20 000 t of exploitable uranium resources and 10 000 t of additional reserves. There are three areas in Hungary where uranium occurrences are known, but only one region in the Mecsek Mountains has been exploited. Hungary mined uranium ore, which was processed into yellowcake at Mecsek and then shipped to the Russian Federation. Fuel cycle services were guaranteed by the former Union of Soviet Socialist Republics (USSR) when Hungary purchased Soviet reactors, including the fabrication and shipping of the fabricated fuel assemblies to Hungary, and the return of the spent fuel to the former USSR. Hungary does not have other fuel cycle capabilities such as fuel conversion, enrichment or fabrication capacities.
There are no reprocessing capabilities in Hungary, and no plans to develop any.
A new type of fuel assembly with improved parameters was introduced at the Paks NPP. The enrichment of the new fuel is increased and it contains burnable poison (gadolinium isotope). The increased enrichment enhances the economic efficiency of the fuel cycles, while the application of the burnable poison compensates for the potential negative effects of the increased enrichment on the safety features of the reactors and the transport and storage devices, with the change matching a worldwide trend. In 2010, test operation of 18 assemblies was completed following licensing in 2009. The preliminary use of the test assemblies was necessary for the validation of the design computer codes. When the test programme was finished successfully, the HAEA issued a licence for the general use of the new fuel. On this basis, the first batch of the new fuel assemblies was loaded at Unit 4 in 2010. The results of a special inspection programme showed that the behaviour of the fuel assemblies is in harmony with the preliminary estimates and design requirements. The transition to the new fuel will be finished gradually during the next 4–5 years.
2.7.2. National Policy and National Programme on the Management of Spent Fuel and Radioactive Waste
The basis for creating the National Programme was Parliamentary Resolution No. 21 of 2015 (V. 4) on the adoption of the National Policy on the Management of Spent Fuel and Radioactive Waste in line with the provisions of Council Directive 2011/70/Euratom of 19 July 2011 establishing a Community framework for the responsible and safe management of spent fuel and radioactive waste [3]. The national policy defines the basic principles of the management of all radioactive waste and spent fuel produced in Hungary upon which the national programme was developed and adopted by the Government in 2016.
An important feature of Hungary’s national programme is that the decision maker has not yet found it necessary to make a final decision on the back end of the fuel cycle. Although reprocessing of spent fuel has never been done in Hungary, the option of future reprocessing (only abroad) is worth reserving.
Nevertheless, it is clear that a domestic deep geological repository is necessary for Hungary, regardless of any decision on the back end of the nuclear fuel cycle. In addition to reprocessing of spent fuel, operation and decommissioning activities will also inevitably lead to some amount of high level waste.
Being aware of this, the national policy requires a flexible (reversible) yet active approach: the so called ‘DO and SEE’ policy. It means that instead of allowing delay in real actions (for instance, until the final political decision on the back end is known), a real and ongoing research programme for a deep geological repository is required.
While a final decision on reprocessing (only abroad) is not yet available, research and other planning activities for implementing the national programme should be based on a reference scenario, which is currently the direct disposal of spent fuel in a domestic deep geological repository, together with other high level waste arising from operation and decommissioning.
Naturally, the flexible nature of the ‘DO and SEE’ policy cannot be sustained forever. Eventually, when research and repository development activities require that the waste packages be characterized, it will become necessary to make a clear and final decision on the back end of the nuclear fuel cycle.
2.7.3. Spent fuel
According to the Hungarian–Soviet Intergovernmental Agreement on Cooperation in the Construction of the Paks NPP, signed on 28 December 1966, and the Protocol signed on 1 April 1994 attached to this agreement, the Soviet Union and Russian Federation undertook to accept spent fuel assemblies from the Paks NPP in such a manner that the radioactive waste and other by-products arising from the reprocessing of such fuel would not be returned to Hungary. Until 1992, the return of the spent fuel assemblies was conducted without problems, under conditions which were very favourable for Hungary, but which nevertheless deviated from normal international practice. In the interest of ensuring undisturbed operation of the NPP, it became necessary to find an interim solution (50 years) for the storage of spent fuel assemblies.
The Spent Fuel Interim Storage Facility (designed by GEC Alsthom UK) at the Paks site is a modular vault dry storage type spent fuel storage facility which has been receiving irradiated fuel assemblies from the Paks NPP since 1997. The increase of storage capacity is in line with the demands of the Paks NPP. The 33 planned vaults are assumed to be capable of storing all spent fuel until the end of the extended service life of the plant. At present, 24 vaults are ready, allowing for storage of 11 416 spent fuel assemblies. Beginning with vault number 17, a square arrangement is applied for the storage tubes instead of the triangular arrangement that is used in vaults 1–16; consequently, 527 spent fuel assemblies can be stored instead of the original 450.
According to a recently elaborated concept, it is possible to further increase the capacity per vault. By the new storage concepts licensed for vault numbers 25 through 33 in 2017, a single vault will be able to store 703 spent fuel assemblies in the future. When the storage facility reaches its maximum planned capacity, it will be able to store a total of 17 743 fuel assemblies in the 33 vaults.
2.7.4. Waste management(1)
The basic regulation in force at present, the Act on Atomic Energy, expresses Hungary’s national policy in the application of atomic energy. Among other aspects, it regulates the management of radioactive waste and authorizes the Government and the ministers responsible to issue government decrees specifying the most important requirements in this field. The Parliament approved the Act on Atomic Energy in December 1996; the Act entered into force on 1 June 1997. In accordance with this Act, from July 2014, the HAEA took over the responsibility of regulatory oversight of the repositories.
The Act on Atomic Energy states that radioactive waste management shall not impose any undue burden on future generations. To satisfy this requirement, the long term costs of waste disposal and of decommissioning the NPP shall be paid by the generations that enjoy the benefits of nuclear energy production and applications of isotopes. Accordingly, by the act and its executive orders, a Central Nuclear Financial Fund was established on 1 January 1998 to finance radioactive waste disposal, interim storage of spent fuel, the closure of the nuclear fuel cycle as well as the decommissioning of nuclear facilities. The Government authorized the director general of the HAEA to establish the Public Agency for Radioactive Waste Management; this agency has been in operation since 2 June 1998. In line with the corporate forms used in the European Union, the Public Agency for Radioactive Waste Management was transformed on 7 January 2008 into PURAM.
On the basis of the Act on Atomic Energy, PURAM is to design and carry out radioactive waste management in such a way that it is to be safe during the whole duration of the activity and it does not affect human health and the environment abroad to a greater extent than the accepted value within the country.
In the field of radioactive waste management, the following projects are under way.
2.7.4.1. Disposal of high level and long lived radioactive waste
In 1995, a programme was launched for solving the problem of the disposal of high level and long lived radioactive waste. Although there is no final decision yet on the closure of the nuclear fuel cycle, a domestic deep geological repository must be built in any case for other high level waste, including decommissioning waste. The programme focuses on investigations in the area of the Boda Claystone Formation in West Mecsek. Currently, surface based investigations are taking place, including trenching, drilling boreholes and geological and geomorphological mapping. An underground research laboratory is planned to operate from 2038 to 2054, and the repository will operate from 2064.
2.7.4.2. Disposal of low and intermediate level radioactive waste from the Paks NPP: National Radioactive Waste Repository in Bátaapáti
For the disposal of LILW from the Paks NPP — following a country-wide screening and to bolster public acceptance — explorations were carried out in the vicinity of Bátaapáti (Tolna County, about 65 km southwest of Paks). Reflecting the results of extensive research work, the Hungarian Geological Survey declared the site geologically suitable for housing an LILW geological repository. In November 2005, after a decade spent on siting investigations, the Hungarian Parliament gave its preliminary approval in principle for the construction of the repository by the Resolution of the Parliament No. 85 of 2005 (XI. 23). It is a formal requirement in accordance with the Act on Atomic Energy. Prior to the vote in Parliament, a local referendum was held, and nearly 91% of the voters (voting percentage 75%) agreed that an LILW repository should be established in Bátaapáti.
In addition to the ongoing underground research activities, both the licensing procedure and the preparation for construction started in 2006. The competent authority issued the environmental licence in 2007. By October 2008, the surface buildings of the NRWR were completed. Later, the authority granted an operating licence that was valid for the surface part of the facility. The operating licence allows the buffer storage of 3000 drums (with a capacity of 200 litres each) containing low and intermediate level solid radioactive waste from the Paks NPP. The first transports of waste were delivered to the facility at the end of 2008. The first chamber of the repository was put into operation in 2012. The second disposal chamber received an operating licence in 2017. The third and fourth chambers were excavated in 2015. The capacity of the NRWR will meet the demand of the Paks NPP, and the underground space will be extended to make it sufficient for the entire lifetime of the Paks NPP.
2.7.4.3. Radioactive Waste Treatment and Disposal Facility in Püspökszilágy
The Radioactive Waste Treatment and Disposal Facility was built for the disposal of institutional radioactive waste. The low level, solid waste from the Paks NPP was transported to the repository in Püspökszilágy only as a provisional solution. At the same time, the capacity of the facility was built for the disposal of institutional radioactive waste. The low level, solid waste from the Paks NPP was increased with the financial support of the power plant. The total capacity of the repository is now 5040 m3. The operating licence for the facility was renewed by the HAEA in 2017 for 50 years.
At the same time, the results of the safety assessments unambiguously indicated that certain spent radiation sources may pose a risk in the distant future, after the closure of the repository, in the event of inadvertent human intrusion. Therefore, with the aim of enhancing the long term safety of the repository, a multi-year programme was launched in the framework of which the ‘critical’ waste types are segregated from the retrieved waste and then the rest are — as far as possible — compacted before redisposal in the vaults. By doing so, the repository — which used up its capacity in 2004 — can continue to accommodate the institutional radioactive waste from all over the country.
In order to provide the possibility of large scale waste retrieval, it is necessary for the long term to build a large, light structure hall which can ensure appropriate working conditions and satisfies the radiation safety and environmental protection functions necessary for the work. The documentation supporting the building licence for the light structure building has been prepared, and the HAEA has granted the building licence based on it. Preparation for building of this structure started at the end of 2017, and processing work is planned after 2019.
2.8. RESEARCH AND DEVELOPMENT
2.8.1. Research and development organizations
The Act on Atomic Energy stipulates that the safe use of nuclear energy must be aided by the development of science and technology, harmonized organization of research, practical implementation of domestic and international research results, and training of professionals. The coordination and assessment of R&D activities in the field of nuclear safety and security is the responsibility of the HAEA. In addition, the HAEA also finances activities aimed at supporting the regulatory oversight of the safe use of nuclear energy.
To maintain the quality of such a complex programme, the HAEA defined its basic principles and requirements for performing technical support activities. Scientific technical support is provided by a group of scientific technical institutions and other engineering organizations (TSOs). While details of the technical support activities are defined on a contractual basis, strategic partner agreements provide the opportunity to obtain quick, high level expert work free of charge. The HAEA has strategic partnership agreements with the Centre for Energy Research, the Nuclear Safety Research Institute (NUBIKI) and the BME NTI. The system of TSO partner agreements ensures that the HAEA has the appropriate engineering and scientific reserve capacities to handle situations which need fast and technically correct decisions.
To efficiently harmonize TSO cooperation, the HAEA developed a medium term R&D concept, which is regularly updated, determining the main areas of work for the upcoming period. The most important R&D areas for 2017–2020 include: support and modernization of the regulatory work; decommissioning and radioactive waste management; development of operational safety; nuclear emergency preparedness; and physical protection of nuclear facilities and radioactive waste storage facilities.
2.8.2. Development of advanced nuclear technologies
Fast reactors are especially important from the point of view of sustainability of nuclear energy as a tool for closing the fuel cycle. The gas cooled fast reactor (GFR) also has potential to deliver high temperature heat for industrial processes and is considered as an alternative reactor type to the sodium cooled fast reactor. The main R&D areas for GFR technology were identified in the Strategic Research Agenda of the Sustainable Nuclear Energy Technology Platform and the Concept Paper of the European Sustainable Nuclear Industrial Initiative.
The four respective nuclear research organizations of the Visegrad 4 region (ÚJV Rež, Czech Republic; Centre for Energy Research, Hungary; National Centre for Nuclear Research — NCBJ, Poland; and VUJE, Slovakia) established the V4G4 Centre of Excellence in 2013 for the coordination of technical, experimental and other issues related to the preparation of the construction of the GFR demonstrator ALLEGRO. In January 2017, the French Alternative Energies and Atomic Energy Commission (CEA) joined the consortium as an associated member. A second Czech company, CV REZ joined the consortium as an associated member in January 2019. V4G4 launched the ALLEGRO project in July 2015. The first phase of the project aims to develop the conceptual design of the ALLEGRO reactor, addressing all safety related and other technical issues. The corresponding roadmap of the design work and safety analysis is under realization and the conceptual design has to be completed by 2025. To support these activities a research, development and qualification roadmap is under preparation, providing a framework of the experimental work needed by the design and safety activities.
2.8.3. International cooperation and initiatives
In Hungary, both the licensees and the HAEA maintain wide ranging relations with various international organizations and other international forums, with other countries and institutions involved in the design, manufacture, installation and operation of nuclear facilities and with research institutes.
These relations serve as a means of exchanging knowledge and experience. The fact that Hungarian experts are held in high esteem internationally is demonstrated by their active role on different committees, with many of them being board members of international organizations or invited as experts.
Hungary has been a Member of the IAEA since 1957 and the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA) since 1996.
Hungary has bilateral international agreements with Australia, Austria, Canada, Croatia, the Czech Republic, Germany, the Republic of Korea, Romania, the Russian Federation, Saudi Arabia, Serbia, Slovakia, Slovenia, Ukraine, the United States of America and Viet Nam.
The HAEA has concluded memoranda of understanding on cooperation and mutual information exchange with regulatory authorities in Belarus, Bulgaria, the Czech Republic, Finland, Morocco, Poland, Romania, the Russian Federation, Slovakia, Turkey, Ukraine and the United States of America.
Regional programmes organized by the European Union and the IAEA play an important role in cooperation between the regulatory authorities of neighbouring countries. Moreover, the HAEA is taking part in quadrilateral cooperation with the Czech Republic, Slovakia and Slovenia.
The HAEA takes part in several international cooperative activities, including the following:
International organizations:
IAEA;
OECD/NEA;
European Atomic Energy Community (Euratom);
Comprehensive Nuclear-Test-Ban Treaty Organization.
Multilateral cooperation:
Nuclear Suppliers Group;
Zangger Committee.
Nuclear forums:
ENSREG;
WENRA;
European Safeguards Research and Development Association;
European Nuclear Security Regulators’ Association;
Heads of the European Radiological Protection Competent Authorities;
European Association of Competent Authorities;
Forum of the State Nuclear Safety Authorities of the Countries Operating WWER Type Reactors.
The Paks NPP is a member of several international bodies of major importance, including the World Association of Nuclear Operators (WANO), the WWER-440 operators’ club, the WWER users’ group, the International Nuclear Safety Programme (the so called Lisbon Initiative) and the Nuclear Maintenance Experience Exchange (NUMEX). Paks II Ltd is also a member of WANO.
PURAM takes part in activities of relevant international organizations (IAEA, OECD/NEA, etc.) and maintains bilateral contacts with other companies involved in radioactive waste management in other countries.
The Hungarian Nuclear Society is a member of the European Nuclear Society, and the Health Physics Section of the Eötvös Loránd Physical Society is a member of the International Radiation Protection Association.
The TSOs of the HAEA take part in international activities, including the working groups of the OECD/NEA.
2.9. HUMAN RESOURCES DEVELOPMENT
The BME NTI operates a training reactor with the nominal power of 100 kW(th). Using this unique facility, the university developed special nuclear education programmes for physics and energy engineering students at the undergraduate and postgraduate levels. A medical physics specialization of the physics Masters programme has also been available since 2010. The BME offers postgraduate nuclear training for engineers working in or willing to work in the nuclear industry. Special training courses for foreign students — with durations of six weeks to three months — are available at the institute.
There is a particle accelerator at the University of Debrecen, which is another resource for specialists in the field of nuclear sciences.
At the Faculty of Science of Eötvös Loránd University, the students of the physics faculty also learn about nuclear techniques and practice at the Centre for Energy Research.
2.9.1. Paks Nuclear Power Plant
The Paks NPP has its own training organization, which operates a state of the art training infrastructure. The training organization provides initial and refresher training both for its own employees and contractor staff. The training system is operated on the basis of the IAEA systematic approach to training system. Job specific training programmes and training materials are available for all the job positions related to nuclear safety. As part of the training infrastructure, there is a full scope replica simulator for operator training. For training the maintenance and technical support staff, a unique maintenance training centre is available, equipped with real primary circuit equipment such as a reactor vessel and its internals. The training organization cooperates broadly with national and international institutes and universities in the human resource development area.
2.9.2. Hungarian Atomic Energy Authority
At the HAEA, inspectors take part in a predefined training programme, which is reviewed annually. The training plan is divided into three parts: the training of newcomers, refresher training and specific training. The training plan also utilizes the results of R&D projects.
Newcomers to the HAEA also complete a special training course. It includes all important fields related to the HAEA responsibility areas, in addition to special training courses at the Paks NPP and at the other licensees. After having fulfilled the predefined training programme, the newcomers have to pass the inspector exam, in which they analyse real events regarding the licensing, supervision and investigation process of the HAEA.
The longer term training programme contains training directions based on the knowledge profile survey and on the future projects and strategy of the HAEA, such as bigger systems for the Paks NPP, lifetime extension at the Paks NPP, decommissioning, R&D projects and legal environment.
At the initiation of the director general of the HAEA, following thorough negotiations conducted in 2009, the representatives of Hungary’s leading nuclear organizations established the Hungarian Nuclear Knowledge Management Database System on 22 June 2010 by signing a joint cooperation agreement at the HAEA headquarters. The main objective of the system is to collect and maintain the Hungarian documentation of the expertise accumulated during the application of atomic energy for future generations. This continually updated common database facilitates the sharing of knowledge and information within the nuclear community.
The code of conduct developed by the editorial committee was signed on 15 December 2010, and established the administrative conditions and the technical provisions for the operation of the knowledge management database. Consequently, the ordinary use of the ‘common electronic repository’ of the Hungarian nuclear community started in 2010. The uploading of documents is ongoing; the database currently consists of approximately 9000 documents.
2.9.3. Paks II
It is important for the Paks II project to employ highly qualified workforce; the project company established the Paks II Academy to support this goal. The educational offerings aim to provide different training for various levels of education. Within the framework of the Paks II Academy, a high quality post-graduate course is offered for engineers. Paks II Ltd compiled the curriculum and developed the training materials in cooperation with the Budapest University of Technology and Economics, the University of Pécs, the University of Debrecen, the University of Pannonia, the University of Miskolc and the University of Dunaújváros. Together, these six universities launched the “Engineer of Nuclear Power Plant Operations” post-graduate course with the financial support of Paks II Ltd. Therefore, the course is free of charge for participating students.
2.10. STAKEHOLDER INVOLVEMENT
In the area of stakeholder involvement, the HAEA is:
Arranging public hearings in all facility level licensing procedures to ensure transparency and openness;
Organizing “About Atomic Energy — to Everyone” student conferences, forums and meetings for other authorities, for licensees;
Publishing a wide range of documents on its web site, such as country reports (Convention on Nuclear Safety, Joint Convention), annual reports, pieces of legislation, guiding documents and all relevant news and events;
Publishing draft versions of guiding documents for public opinion;
Running a Facebook profile.
2.10.1. Public relations and information on the Paks Nuclear Power Plant
MVM Paks NPP Ltd frequently informs the public of events at the power plant via press releases. The press releases are also uploaded, together with other information materials, to the Hungarian and English web site of the NPP (www.atomeromu.hu and www.atomeromu.hu/en).
MVM Paks NPP Ltd has a Visitors’ Centre and a Nuclear Energetics Museum. The Visitors’ Centre was established in 1995 and receives over 25 000 visitors annually. The number of visitors in the Nuclear Energetics Museum, open since 2012, exceeds 14 000 per year. Thanks to its programmes, the NPP remains a popular tourist destination.
The number of followers of the Facebook page of the Paks NPP increases year by year; the activity of the followers is exceptional both within and outside the industry.
The Paks NPP organizes an annual ‘open day’ with various activities, which is popular with participants.
2.10.2. Public relations and information on the Paks II project
Paks II Ltd continued intensive communication on the status of the project in 2019. In addition, Paks II Ltd reported regularly on its web site and social media platforms on developments and events and on its web site in fulfilment of its disclosure obligations. The population next to the NPP site receives updated information about developments in the Paks II project. Among the local and regional media content, there has always been information about the project company’s press conferences and the latest events regarding the project.
To inform the public, the company’s informative advertisements and public relations articles were published in the county daily newspapers and local media, presenting the importance of nuclear energy and the Paks II project.
In the Paks NPP’s Visitor’s Centre, an information corner about the new NPP units has been made available since September 2016.
In March 2019, the ‘Energy Inside Us!’ interactive information truck continued its country tour. In the first quarter of 2019, the vehicle visited the major towns and cities of Komárom-Esztergom and Fejér counties, then — as in previous years — it went on to attend summer festivals. Following the autumn/winter season, the truck was available for a visit in Pest county. The mobile exhibition had more than 55 000 visitors in 2019. The exhibition was requested to attend the Construma Expo in Budapest and the Pálinka Festival of Gyula, but it also ‘returned home’, which earned a record: at the Town Day of Paks, it hosted about 1 600 visitors.
The company introduced several new information platforms in 2019. The information tent debuted in May 2019 in Paks, and was mainly present at local and cultural events across the region.
Through the so-called “What’s new, Paks II?”, an A/3 sized poster focused on the more than 50 settlements of the region, the locals could gain information about the most important events of the implementation of the two new NPP units at their settlement’s billboards in September 2019.
The new stand of Paks II Ltd was introduced in November 2019, first in Pécs, at the AtomEco international forum and expo. The company intends to attend job fairs, scientific expos and conferences, and energy expos with the stand, which has a unique design and is equipped with modern technology. The stand consists of a system of variable elements, making it possible to build it up in several sizes and configurations. It includes unique elements, modern LED technology, effect lighting and indirect lighting with modern equipment, for example: monitors with educational short films about nuclear energy and the operation of the Paks Nuclear Power Plant, the Paks II. project, interactive displays, tablets with questionnaires and AR application about a VVER-1200 reactor, games for children on nuclear energy (matchmaker, difference finder), interactive board about the currently operating nuclear power plants of the world, leaflets in English and Hungarian.
2.10.3. Public relations and stakeholder involvement of the Public Limited Company for Radioactive Waste Management
The primary purpose of the communication work of PURAM is to obtain, retain and reinforce the confidence and acceptance of the public to ensure that existing or planned facilities can safely serve, for many decades, the benefit of the country.
The company’s regional communication task is to keep contact with and inform the stakeholders who live near the facilities. Thanks to the successful cooperation between PURAM and the local associations of the municipalities, the company receives help in organizing public events and school competitions, and publishing in local newspapers.
The other part of the communication strategy focuses on national and international relationships. PURAM has a showroom in Paks, next to the spent fuel interim storage facility, and a Visitors’ Centre in Bátaapáti, on the site of the NRWR, where the company also hosts civil and expert visitors.
PURAM has several brochures, publications and web site news stories, which also give widespread information about the company’s activities. Additionally, PURAM conducts public opinion polls every two years, which can help to generate useful feedback about the general attitudes of the Hungarian public.
2.11. EMERGENCY PREPAREDNESS
2.11.1. Regulatory framework
Act No. 118 of 2011 on disaster management, and on the amendment of the related acts and its implementation laws, Govt. Decree 234/2011 (XI. 10) and Govt. Resolution 1150/2012 (V. 15) on establishment along with the rules of organization and operation of the Disaster Management Interministerial Coordination Committee (DMCC) regulate the structure of the national disaster management system, including the prevention, preparation and response related tasks of the ministers and state organizations involved in the response to disasters as well as the tasks of the disaster management coordination organization of the Government.
2.11.2. Operation of the Hungarian Nuclear Emergency Response System
The structure and tasks of the Hungarian Nuclear Emergency Response System (HNERS) are outlined in Govt. Decree 167/2010 (V. 11) on the national nuclear emergency response system. Under normal circumstances, organizations of the HNERS are in a state of readiness and carry out preparatory work and training. The concerned organizations perform ongoing tasks related to measurement data acquisition, information acquisition, radiological data exchange and planning, information or cooperation. In a potential nuclear emergency, it is the task of the Nuclear Emergency Response Working Committee of the DMCC to provide professional decision support. Within the affected installation, the person responsible for implementing tasks related to the response to a nuclear emergency is the chief executive of the installation; at the national level, it is the chairperson of the DMCC; while in the counties and in the capital, it is the chairperson of the regionally competent County (Capital) Defence Committees. The chairperson of the County (Capital) Defence Committee is the Government’s commissioner, whose deputy is, as far as response to disasters is concerned, the management of the regional office of the professional disaster management organization. Among other tasks, the National Radiation Monitoring, Early Warning and Surveillance System (NRMEWS) is responsible for monitoring the radiation situation in Hungary, and it provides the information required for the decision support and decision making activities of the DMCC. The central body of the NRMEWS is the Nuclear Emergency Information and Analysis Centre working at the National Directorate General for Disaster Management of the Ministry of Interior. The tasks of the NRMEWS include the continuous monitoring, warning and verification of the national radiation situation, as well as supporting warnings and notifications according to the operating status of the HNERS by maintaining the early notification conditions of the national nuclear emergency response. In a nuclear emergency, it is the task of the HAEA to evaluate the nuclear safety and radiation conditions. Data and information for evaluation are provided by the Centre for Emergency Response, Training and Analysis (CERTA) operating within the organization of the HAEA and by the Nuclear Emergency Information and Analysis Centre operated by the National Directorate General for Disaster Management. Early detection tasks on the basis of monitoring of the national radiological conditions are fulfilled by the National Directorate General for Disaster Management. The nuclear emergency response related Real-time On-line Decision Support System for Nuclear Emergency Management (RODOS) also operates there, as well as the Hungarian Centre for the European Radiological Data Exchange Platform.
2.11.3. National Nuclear Emergency Response Plan
The HAEA operates a high level working group consisting of the state administration organizations concerned for the regular review of the Hungarian Nuclear Emergency Response Plan. The plan is approved by the DMCC.
3. NATIONAL LAWS AND REGULATIONS
3.1. REGULATORY FRAMEWORK
3.1.1. Regulatory authority
The HAEA’s scope of competence comprises the regulatory oversight of nuclear installations, radioactive waste repositories and the safety and security of radioactive material in order to guarantee the peaceful and safe use of atomic energy all while serving the interests of the public as stipulated in laws, safety regulations and resolutions of HAEA.
Radiation protection (such as the oversight of X ray machines), general building authority and general building oversight in the safety zone of nuclear installations and radioactive waste repositories also falls within the scope and competences of the HAEA.
In the framework of its licensing activities, the HAEA confirms through licensing whether safety requirements are met by the licensees and the HAEA authorizes the licensee to carry out activities in relation to the use of atomic energy.
During its inspection activities, the HAEA examines compliance with all regulations contained in laws and licenses, the implementation of measures imposed by the HAEA and whether nuclear energy is used for peaceful purposes. The HAEA regularly analyses and evaluates the activities of the licensees and the safety and security of nuclear facilities, and performs analysis of events that have occurred. In case of an irregularity, the HAEA takes immediate measures for remediation.
The most important oversight tasks related to safeguards also fall within the scope of the competences of the HAEA, as the aim of non-proliferation of nuclear weapons includes the early detection of potential for misuse of nuclear material or technology; hence, its tasks include verifying that nuclear facilities are not misused and the production of nuclear material is not diverted from peaceful purposes.
3.1.2. Licensing process
The basic principles of licensing procedures for NPPs, and the authorities taking part in licensing procedures, are regulated by Chapter 3 of the Act on Atomic Energy. To establish a new NPP or a new NPP unit, the preliminary consent in principle of Parliament is required for starting preparatory work, and to establish ownership of an NPP that is in operation or to transfer the right of operation, the decision in principle of the Government is required. According to the regulations in force, a licence is to be obtained from the authorities for all phases of operation (siting, construction, commissioning, operation and decommissioning) during the lifetime of an NPP. Moreover, a separate licence is to be obtained for all plant level or safety related equipment level modifications. Within the licensing procedures, technical aspects are enforced by legally delegated authorities. The authority takes account of opinions of legally delegated special authorities. When the installation of a new NPP is being considered, the precondition for launching the licensing procedure is the existence of an environmental protection licence. During the licensing procedure, the licensee prepares a preliminary environmental impact study. The environmental protection authority then sends the preliminary impact study to the relevant authorities to seek the opinion of authorities of potentially affected areas who in turn expose it to public view. The environmental protection authority, if it does not reject the detailed environmental impact study that has been submitted, subsequently holds a public hearing. Based on the detailed environmental impact study and on the responses received, the environmental protection authority may issue an environmental protection licence for the construction and operation of the plant.
The safety related licensing of a nuclear installation takes place after the environmental licensing. The environmental protection authority plays the role of special authority in the course of licensing a nuclear installation. During the licensing of installations and equipment and of their modifications, the contributing procedure of the environmental protection special authority provides the possibility for civil organizations to act as clients. The decisions of the nuclear safety authority are made public. Those licences to be issued based on Act No. 110 of 2001 on Electric Energy are also required for establishing and operating a nuclear plant. Licences are valid for fixed periods; on request and provided that the necessary requirements are fulfilled, they may be extended. A licensee can appeal the decisions of the authority. It has the right to appeal in court.
Every ten years, a periodic safety review of the safety of the NPP is performed. Any decision on the further validity and conditions of the operating licence is made within the framework of the review.
For certain facilities, beyond the regulatory licensing procedure, the Act on Atomic Energy requires higher approval as well. Preliminary consent of the Government shall be required to acquire ownership of a nuclear facility and radioactive waste repository, or transferring the right of its use. Preliminary consent of the Parliament shall be required before starting preparatory actions in the construction of a new nuclear facility or radioactive waste repository, or for the expansion of an existing nuclear power plant with additional units.
3.2. MAIN NATIONAL LAWS AND REGULATIONS IN NUCLEAR POWER
3.2.1. Main national laws and regulations
3.2.2. Laws and regulations related to the planned new nuclear units at the Paks Nuclear Power Plant
3.2.3. Main regulations in the field of nuclear power
Appendix I
MULTILATERAL AND BILATERAL INTERNATIONAL AGREEMENTS
Multilateral and bilateral international agreements are available on the HAEA web site, as well as memberships in international organizations:
www.oah.hu/web/v3/HAEAportal.nsf/web?openagent&menu=03&submenu=3_6
www.oah.hu/web/v3/HAEAportal.nsf/web?openagent&menu=02&submenu=2_7
Appendix II
MAIN ORGANIZATIONS, INSTITUTIONS AND COMPANIES INVOLVED IN NUCLEAR POWER
REFERENCES
[1] MINISTRY FOR INNOVATION AND TECHNOLOGY, National Energy Strategy and National Energy and Climate Plan (2030, with an outlook up to 2040), Ministry for Innovation and Technology, Budapest (2020).
[2] Council Directive 2013/59/Euratom of 5 December 2013 Laying Down Basic Safety Standards for Protection against the Dangers Arising from Exposure to Ionising Radiation, and Repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom, Official Journal of the European Union L 13, Publications Office of the European Union, Luxembourg (2014).
[3] Council Directive 2011/70/Euratom of 19 July 2011 Establishing a Community Framework for the Responsible and Safe Management of Spent Fuel and Radioactive Waste, Official Journal of the European Union L 199, Publications Office of the European Union, Luxembourg (2011).
A detailed list of legislative acts governing the peaceful use of nuclear energy is available from the HAEA web site (www.oah.hu).