The influence of edge viscosity on plasma instabilities
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Abstract. Viscous stresses may be important in the behavior of natural and laboratory plasmas.
This paper examines two cases where edge viscosity affects the shape and level of instabilities in
plasma discharges. These simple models are developed in the framework of the hydromagnetic
equations, including viscosity effects though considering the plasma as a perfectly conducting
fluid.

1. Introduction

The interface between the plasma and its surroundings affects both the structure of
plasma instabilities and the quality of confinement. According to well established proce-
dures in magnetohydrodynamic (MHD) theory, the boundary conditions for the analysis
of instabilities is set by the flow of mass, magnetic flux, and energy across the boundary.
However, ideal MHD disregards the role of viscosity in fluid motion. Although viscosity
effects can be generally neglected in the study of large scale instabilities in fusion plasmas,
they may have a strong influence on high order modes of oscillation near the plasma edge.

This paper reports two instances where edge viscosity has a significant role. In the first
example the turbulence associated with the Rayleigh-Taylor instability, which is driven
during the contraction stage of the decaying return stroke of a lightning discharge, creates
anomalous viscosity that defines the spatial structure of bead lightning. In the second
example the high beta current driven instabilities in a cylindrical plasma are examined
by taking into account the effect of viscosity at the boundary. It is shown that the m =1
kink mode is barely changed, but the higher order m > 2 modes are significantly damped
by high edge viscosity (low collisionality). This has interesting implications for magnetic
fusion, since the ballooning modes, which set a limit to the maximum pressure that can be
confined in a tokamak, could be strongly affected. In the presence of flow at the edge (not
considered here) viscous stresses are expected to modify the stability conditions, acting
as a “surface tension".

2. Formulation of the hydromagnetic problem

The problems examined in this paper are described by the fluid equations for a viscous
magnetized plasma [1, 2, 3]. These are the mass conservation equation, Navier-Stokes
equation, local equation of state, Ampeére’s law, and combined Faraday’s and Ohm’s laws
for a perfectly conductive fluid, given respectively by
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where 7 is the coefficient of shear viscosity and ¢ models a localized acceleration field.

A set of appropriate boundary conditions is specified by the _C)ontinuity of the magnetic
field in the absence or presence of a surface current density K, fluid continuity, no-slip,
stress continuity, and pressure balance conditions, given respectively by
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where p (a) is an average mass density at the edge and the “gravitational” potential ¢, is
related to the acceleration by ¢ = —Vo,.

The equilibrium equations with negligible flow, which is the standard assumption in
static ideal MHD, are:
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Stability of the fluid equilibrium is tested expressing the perturbation in the velocity in
terms of a Lagrangian displacement
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The equation of motion for the perturbations is
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The external magnetic field perturbation is given in terms of a magnetic potential ¢,, by
ﬁ
0B = — 11V, (8)

The boundary conditions for the perturbations are specified by the continuity of the mag-
netic field (in the presence of a surface current), fluid continuity, no-slip, stress continuity,



and pressure balance conditions, given respectively by
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In its full form, the equation of motion (5) requires the solution of a boundary layer
problem. However, for weak viscosity and relatively low frequency perturbations, vorticity
will be slowly generated and can be neglected in a first approximation. Furthermore, one
may neglect the small modification introduced by the viscous forces on the energy required
to compress the fluid, reducing the equation of motion to the standard MHD form
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Of course, the solution of the equation of motion in this form cannot satisfy the tangential
conditions of continuity of the fluid velocity and stress across the boundary layer. Never-
theless, for free-boundary perturbations the most important contribution of the viscosity
comes from the normal pressure balance condition
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where the small contributions in the compressive energy introduced both by the acceler-
ation and the viscous forces across the boundary layer were also neglected.
Finally, the perturbations that retain cylindrical symmetry are of the form
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3. Natural plasma: bead lightning formation

The first example in this paper proposes a mechanism for the formation of bead lightning,
a not well understood phenomenon usually observed in triggered lightning experiments [4].
Figure 1 shows a sequence of pictures taken at 1,000 frames per second corresponding to
the slow cooling stage of the lightning discharge channel between two consecutive strokes
of a 10-stroke flash. This 45kA peak current discharge was triggered by a small rocket
carrying a thin copper wire connected to the launching platform. The beaded structure in
this picture has a characteristic axial wavelength of about 0.5 m estimated from the size
of the launching platform also seen in some of the frames. Figure 2 displays the typical
current waveform for such a 45kA triggered discharge.

The lightning discharge is unstable to the sausage (m = 0) and kink (m = 1) hydro-
magnetic current driven modes [5]. Also, the hydrodynamic Rayleigh-Taylor instability is
driven by the backflow of air into the channel during the contraction stage of the decaying



Figure 1: Ewvolution of the beaded structure at 1ms time intervals during a pause between the

last two return strokes of a 10-stroke triggered lightning discharge.
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Figure 2: Typical current waveform of a 45 kA return stroke in triggered lightning discharges
shown for two different time scales.

return stroke. These instabilities have a similar role in defining the beaded structure of
the decaying return stroke. However, since the magnetic pressure is much smaller than
the kinetic pressure, the hydromagnetic instabilities are much weaker than the hydrody-
namic instability while the latter one lasts. Therefore, it is mainly the Rayleigh-Taylor
instability that defines the final beaded structure [6].

As briefly discussed in the previous paragraph, the main source of instability in lightning
is the transient acceleration at the channel boundary during the contraction stage. Hence,
the magnetic field effects can be neglected in the simplified equation of motion (10)
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For an expanding discharge with a sharp boundary of radius a and uniform internal and



external pressures p; ., the equilibrium pressure balance is
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where L, is the scale length of the radial acceleration profile with maximum value g. In the
snowplow model the quantity 2maL,p (a) gives the total mass inside the cylindrical shell
of unit length, radius a, and thickness L, < a. Viscosity of the external air is negligible,
but viscosity effects inside the discharge are relevant because of the high temperature and
expected turbulent fluctuations. The full dispersion relation for this problem becomes
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speed of sound. The short wavelength limit gives
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which corresponds to gravity waves (w ~ 1/gk) damped by viscosity. In the case of a
contraction (¢ < 0) the maximum growth rate and corresponding wave number in the
short wavelength limit (17) are given by
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This result shows that viscosity defines the scale of the most unstable perturbations.

As turbulence arises from the instability, the ratio of apparent to molecular viscosity is
given by the Reynolds number Re = Avl/v;, where the velocity fluctuations and the scale
length of turbulence are defined respectively by Av = Ki¢; and ¢ = Ksa. The numerical
coefficients K; and K5 must be determined from experimental data or simulations, but
should be of the order of unity for fully developed turbulence, that is, K; = Ky = 1. For a
lightning discharge with central temperature 7; = 10, 000 K (decaying stage) the kinematic
viscosity is ; 2 0.0060 m? /s and the speed of sound is ¢; = 2.0 km/s. The corresponding
temperature at the edge of the channel is T; = 3,800K, with v; = 0.0012m?/s and
¢; = 1.24km/s. During the contraction stage the channel radius for a 45kA peak current
lightning discharge is @ = 4cm and the peak acceleration is |g] = 7.1 x 10*m/s? [6].
It follows that Reynolds numbers of the order of Re ~ 10,000 can be expected for the
largest scale fluctuations. Figure (3) shows the normalized growth rate, iwa/c;, versus
the normalized wave number, ka, obtained from the full dispersion relation (16) for a
45kA discharge. The plots clearly show the shift of the maximum growth rate to larger
wavelengths when the Reynolds number increases.

Table (1) gives the maximum growth rate and corresponding wave number of the kink
instability in a 45kA discharge for Re = 1 (molecular viscosity) and Re ~ 10,000 (fully
developed turbulence). The characteristic wavelength for the largest scale velocity fluc-
tuations is ~ 0.5m, in agreement with the observations. The following picture of the
discharge evolution emerges. In the beginning of the contraction stage the “gravita-
tional” acceleration is relatively strong, the Rayleigh-Taylor instability rises very fast and
the turbulence sets in on the small length scale defined by classical viscosity. During the
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Figure 3: Normalized growth rate of the Rayleigh-Taylor instability in a lightning discharge
as a function of the normalized wave number for various values of the Reynolds number. The
continuous line corresponds to the m = 0 sausage instability and the dashed line to the m =1
kink instability. The short dashed line corresponds to the short wavelength asymptotic limit.

contraction the turbulence develops, the large scale fluctuations fill the arc channel and
the viscosity becomes strongly anomalous, shifting the wavelength of the most unstable
modes to values of the order of and larger than the channel radius a. This process takes a
few milliseconds, before the instability weakens and the spatial structure becomes frozen.
From this point on one may conjecture that the discharge channel slowly diffuses before
the turbulence decays in the absence of a driving energy source. The visible pictures
(Fig. 1) correspond to a diffuse channel showing the frozen spatial structure of the in-
stabilities during the history of their evolution. The main question is the actual level of
turbulence reached in the discharge, a problem suitable to be investigated by simulation.

Re—1 Re—10,000
iWmax@/c; | 0.862 (37 us) | 0.0580 (0.55ms)
(ka) 500 (0.5mm) | 0.513 (49 cm)

max

Table 1: Maximum growth rate and corresponding wave number of the kink instability in a 45 kA
lightning discharge for extreme values of the Reynolds number.

4. Laboratory plasma: high beta instabilities

The second example in this paper treats the effect of viscosity on the kink stability
in a screw pinch. Only preliminary calculations are presented, dealing with the case of
negligible flow. The equilibrium variables, which correspond to a sharp boundary plasma
with a surface current Ky = Iy/ (2ma), can be written in the form
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The simplified equation of motion (10), without acceleration effects, is
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and the boundary conditions are specified by the continuity of the magnetic field, fluid
continuity, and normal pressure balance

ﬁ-[éﬁ—Vx(g xB)] —0 if K#0,
-

2

<5p* +E) -Vp + (5 V) %—H%ﬂ)n (V?) ﬁ> =

-

damping

Considering the perturbations as incompressible, that is, V - E) = 0, and defining the
Alfvén velocity vy = | B, (a)| /\/1top and the beta value
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The propagation constant in a torus is k = n/R. Assuming m > 0, the unstable modes
occur for n < 0 (the source of the instability is the parallel current Ij). Defining the
safety factor ¢ = aB, (a) /[RBy (a)] and taking n = —1 for the most unstable case, the
long wavelength limit of (23) for m > 1 yields
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The critical beta for instabilities of a circular cylindrical plasma is given by [2]
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which reduces to the Kruskal-Shafranov condition ¢ > 2/ (2 — /) > 1 for stability of the

kink mode (m = 1). Now, the ion viscosity at the edge is calculated by the Braginskii

formula 7;0 = 0.96n;kpT;7; resulting in the following estimate for the viscous coefficient
n (24)
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Figure 4: Normalized growth rate versus normalized wave number of the high beta instabilities,
for the poloidal mode numbers m = 1, 2, in a screw pinch with surface current. The continuous,
dashed and short dashed lines correspond, respectively, to 1m0/ (pava) = 0, 0.1 and 0.3.

with kgT;/e = 10 ~ 100eV and n; = 0.01 ~ 0.1 x 102 m~3.

Figure (4) displays, for the poloidal mode numbers m = 1 and m = 2, the normalized
growth rate, ay/vy = aiw/v4, versus the normalized wave number, ka, of the high beta
instabilities in a screw pinch with surface current (surface current model of a cylindrical
tokamak). It is assumed a = 1m, By = 1T, ¢ = 1, and a large = 0.5. The viscous
term, which is proportional to the sheared velocity perturbation, reduces the growth rate,
particularly of the high m-number instabilities.

In general terms, viscosity introduces damping of any sheared velocities. Hence, in the
absence of flow (vorticity), viscosity damps out high mode number oscillations but does not
change the plasma stability conditions. However, this result indicates that the balooning
modes are affected by the interplay of viscosity and non-zero flow acting as a “surface
tension” at the plasma edge. In the presence of flow, the viscous forces counteract the
free-boundary perturbations, possibly modifying the beta limit for stability. Heating the
plasma edge would increase the viscosity and change the confinement properties. With
turbulence, the Reynolds number acts as an additional control parameter. The present
topics of investigation involve equilibrium calculations, using boundary layer methods, of
the vorticity layers that can be maintained at the edge by the balance between magnetic
and viscous forces, and the analysis of their stability.
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