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Abstract The gyrokinetic model for low frequency turbulence in magnetised plasmas is applied
to the tokamak edge. The transition from the edge region into the core shows clear effect of
the changing collisionality and perpendicular/parallel scale length ratios. The results are very
similar to corresponding gyrofluid ones, with the exception that the electron population with
large perpendicular energy but small parallel velocity behaves much like a separate species even
in the absence of trapping effects. This population participates only marginally in the adiabatic
response.

1. Overview of Tokamak Edge Turbulence
The experimental situation of the tokamak edge is characterised by moderate collision-

ality and by steep gradients [1]. The implication for the dynamics of low frequency ExB
eddy turbulence in this regime follows from the frequency and scale ratios implicit in sev-
eral of the dimensionless parameters as discussed below [2]. Observations, where available
[3], have always indicated fluctuations in the 10 percent range on closed flux surfaces with
relative amplitudes such as eφ̃/Te and p̃e/pe for the electrostatic potential and electron
pressure at similar magnitude. Frequencies are broadband and up to what translates to
ω values over 1 MHz. The scale of motion as revealed by correlation length measurements
is typically about 5 to 10 ion gyroradii [4]. This information together suggests that edge
turbulence is fundamentally nonlinear, involving all scales of motion between the drift
scale ρs and the profile scale L⊥ (here note ρs = ρi if Ti = Te). One should therefore
not be thinking in terms of what mode is causing it, but rather of a broad spectrum
covering the entire range of ExB drift dynamics acting as a unit. In other words, drive
and saturation and energy transfer mechanisms, rather than an instability.

There are two main things to realise about the qualitative nature of tokamak edge tur-
bulence: it is not an MHD process, and it is not determined by the properties of linear
instabilities — neither the drive mechanism nor the parameter scaling. The reason for
the nonlinear nature of edge turbulence is the existence of a robust electron density ExB
nonlinear advection. This is allowed to exist by the relative strength of the nonlinear per-
pendicular ExB dynamics in comparison to the (mostly linear) parallel electron dynamics.
The following is a summary of the experience from computational models which carry all
the relevant scales of motion for edge turbulence (cf. Refs. [2,5] and references therein).

The key parameters are those which reflect this competition: the normalised mass
ratio µ̂ = (me/Mi)(qR/L⊥)2, the drift wave collisionality C = 0.51(νeL⊥/cs)µ̂, and the
drift Alfvén parameter β̂ = (4πpe/B

2)(qR/L⊥)2. These give, respectively, the square
of the ratio cs/L⊥ to Ve/qR, the ratio cs/L⊥ to (V 2

e /0.51νe)(1/qR)2, and the square of
the ratio cs/L⊥ to vA/qR, hence the relative importance of the drift dynamics (cs/L⊥)
to either the parallel electron thermal transit (Ve/qR), the resistive diffusion rate, or
the Alfvén transit (vA/qR). For core turbulence all of these except possibly β̂ are very
small, owing to the moderate values of R/L⊥. For edge turbulence, closer to the location
at which the temperature profile would extrapolate to zero, the values of R/L⊥ are in
the range of several tens, so that µ̂ > 1. This allows the electrons to be nonadiabatic
regardless of collisionality, though at these temperatures (of order 100 eV) we always
also have C > 1 and hence are in the regime of collisional drift waves. However, the
ballooning collisionality νB = C(2L⊥/R) is still below unity. In modern tokamaks the



2 IAEA-I1-S7

density is also simultaneously high enough that β̂ > 1, making the response of the electrons
electromagnetic as well as nonadiabatic.

These parameters enter because with a sheared magnetic field on closed flux surfaces
the parallel gradient is nonzero for every degree of freedom available in the set of vari-
ables and wavenumbers. The parallel electron pressure gradient is neither large nor small
compared to the parallel electric field. The result is a strong cross coherence and ener-
getic coupling between the electrostatic potential and electron pressure disturbances. An
adiabatic response refers to the tendency of the electrons to reach force balance, with par-
allel gradients of the electron pressure and electrostatic potential in balance, and hence a
tendency of these two variables to track each other. This adiabatic response is central to
the dynamics but absent in an MHD model.

The reason the turbulence is always nonlinear is more subtle. In linear theory, “dia-
magnetic effects” due to the largeness of the diamagnetic frequency ω∗ compared to the
linear growth rate γL most often do not change the qualitative nature of the instability
— neither for tearing modes nor for ballooning instabilities. The qualitative nature of a
ballooning instability refers not to its eigenmode structure but to the process by which
the ExB flow disturbance is maintained, in this case by the interchange effect on the low-
field side of the torus. However, when the dynamics is both nonlinear and nonadiabatic,
the ExB vorticity advection, representing the polarisation current, maintains the parallel
current divergence at strong levels, larger than the interchange effect can account for.
The interchange effect is lost at short wavelength and the basic mode structure reflects
collisional drift (Alfvén) dynamics. This nonlinear instability (“self sustained turbulence”
[6,7]) roughly follows ω∗ in strength, while γL at the same wavenumber is somewhat less
than γI, the ideal interchange growth rate. In the longer wavelengths, which are not
strongly unstable, there remains some ballooning activity, accounting for about 25 per-
cent of the overall turbulent flux, which is nonlinearly maintained by the inverse cascade
tendency of the vorticity nonlinearity.

Finally, the remaining main concept is scale separation. We have the importance of
the edge turbulence regime µ̂ > 1, which requires qR/L⊥ > 60. But the regime with
γI < 0.2ω∗, which makes possible a range 0.2 < kyρs < 1 in which the self sustained
drift wave turbulence can take over, requires R/L⊥ in its realistic range of over 30. At
the same time, the range near kyρs = 0.2 occurs where there are still many wavenumbers
available in both perpendicular directions. This requires the drift parameter δ = ρs/L⊥
to be in its realistic range of less than 0.02 since the smallest available value of kxL⊥ for
an eddy is π, so that if δ = 0.02 we have kxL⊥ = π for about kxρs = 0.06 and the range
k⊥L⊥ = 0.1 still has several degrees of freedom which are allowed to be roughly isotropic,
that is, properly turbulent.

It is clear that a model or code which does not open up all of these windows cannot
treat edge turbulence because it will be treating something qualitatively different. The
spectral ranges won’t have enough space to function differently in the longer and shorter
wavelengths. The self sustained drift wave regime won’t be present at all. And either
the range kxL⊥ = π or kyρs = 1 will not have available isotropic degrees of freedom and
hence will not function like turbulence. Many of the results in the literature that either
neglect or note the absence of drift wave effects already for these reasons make impossible
to reach a different conclusion. Even some models which could in principle treat this
dynamics properly do not do so because the spectral region near kyρs = 1 is absent for
some or all of the cases considered.
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2. Desirability of a Kinetic Model
Argument about the kinetic nature of the dynamics has usually centered on the elec-

trons, specifically, long mean free path effects. The resulting modification to the parallel
thermal conductivity is what enters. However, the frequency range of the turbulence ex-
tends quite close to the collision frequency νe and so temporal considerations should also
enter. In the electron dynamics these two limits are sufficiently marginal that the effect is
not qualitative. With ω < νe the response of the parallel heat flux to the temperature is
still constitutive and long mean free path effects can be captured using a Landau model.

It is the ions that pose a stronger problem for the usual collisional models. With Ti ∼ Te
the need to treat ρs implies the need to treat unit-order finite gyroradius effects; no
expansion-based gyroviscosity model can rescue the situation. Moreover, the ion collision
frequency νi is very slow. Not only is ω � νi, one also has ω � cs/qR, both by about
two orders of magnitude. Ion dissipation channels (viscosity, heat flux) are very badly
modelled by collisional fluid equations in this situation. Previous work has often done well
to avoid ion dissipation entirely, but it is being considered more often, and usually with
models which are at least those two orders of magnitude outside their validity. With both
of the above inequalities, the situation cannot be saved by “flux limits” since the actual
response of the parallel heat flux to the temperature or the parallel viscosity (actually,
the temperature anisotropy T̃i‖ − T̃i⊥) to flow divergences is no longer constitutive, since
the strongest effect in the determination of these diffusive processes is the nonlinear ExB
time derivative (turbulent advection). However, it is still possible to capture these effects
with a gyrofluid model which treats the turbulent advection in these processes (i.e., they
are given their own dynamical equations) [8].

The remaining consideration is velocity space effects in the electrons, specifically, to
what extent different regions of velocity space can have completely different dynamics.
The clearest case of this is trapped electrons. No gyrofluid model of these can be built in
the absence of bounce averaging (recall that ω reaches values larger than Ve/qR) without
the correct behaviour being known from a gyrokinetic computation in the context of
turbulence. However, although we will find that trapping itself does not have strong
effect, we will also find that the region of velocity space with significant energy but small
parallel velocity effectively decouples from the rest of the electrons because it does not
strongly feel the adiabatic response. Very significant fluctuation anisotropy results, and
the extent to which the gyrofluid model can be made to capture this is uncertain.

3. Model Equations
For this study we use the Vlasov method as developed for collisionless drift wave and

drift-Alfvén turbulence in Refs. [9,10]. The basic scheme used there was built to handle
the parallel electron dynamics for arbitrary values of k⊥ρs, which is especially critical
since the Alfvén response includes both the deep MHD and electrostatic/kinetic limits.
The ability to treat the damping of kinetic shear Alfvén waves in these regimes was
demonstrated in Ref. [11].

Extension of the model to treat edge turbulence includes incorporation of the appropri-
ate coordinate metric techniques to allow slab-character dynamics [12] as well as a suitable
collision operator. We use the space/time discretisation most applicable to wave dynam-
ics and nonlinearities with Poisson bracket structure as used in the gyrofluid GEM code
[8], after its original development for the drift fluid model [5]. Spatial bracket structures
are given a special discretisation [13]. Trapping is represented by an additional bracket
structure, between the parallel space and parallel velocity coordinates, evaluated with a
second-order characteristic method [14]. The collision operator is linearised around the
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background Maxwellian, and both pitch angle- and energy-scattering components are kept
in the standard form developed by Kulsrud [15]. It is given a conservative finite volume
discretisation. The linear drive term involving a single first order derivative is done with
a standard centered difference. The time stepping is a third-order scheme expanding both
the time derivative and combined right hand side across three time steps, evaluating the
right hand side only once per time step [16]. It is stable and highly accurate for both
waves and bracket nonlinearities.

In terms of these Poisson bracket structures, the additional linear gradient drive, and
the collision operator, the delta-f gyrokinetic equation is given by

∂G

∂t
+ δωTF

M ∂ψe
∂y

+ [δψ,H]xy + [δaψ + v‖χ,H]xs − (µB)
χ′

m
[logB, f ]sv‖ = C(f) (1)

and the self consistent field equations represent polarisation,

∑

sp

∫
dW

[
eJ0f + e2F

M

T
(J2

0 − 1)φ

]
= 0 (2)

and induction,

∇2
⊥A‖ +

4π

c

∑

sp

∫
dW

[
ev‖J0f

]
= 0 (3)

with the integrals over velocity space
∫
dW =

∫
Bdµ dv‖ and the sum over species. This

closes the set of dependent variables f(x, y, s, v‖, µ) and φ and A‖ both dependent upon
(x, y, s), with G = f + e(v‖/c)(FM/T )J0(A‖) and H = f + e(FM/T )J0(φ), respectively
representing the inductive and nonadiabatic responses.

The bracket structures are [f, g]ab = [(∂af)(∂bg) − (∂bf)(∂ag)], and the generalised
potentials are ψe = J0(φ− [v‖/c]A‖) and ψ = ψe + e−1(mv2

‖ + µB) logB, respectively in-
corporating ExB advection (φ), the magnetic flutter nonlinearity (A‖), and curvature and
grad-B drift effects (logB), where m and e and T and J0 and the background Maxwellian
FM are set for each species. The sv‖-bracket is magnetic trapping. The factor of B is
understood as constant except for logB in the curvature and trapping terms. The drift
parameters are δ = c/B and δa = c/Ba, becoming δ = ρs/L⊥ and δa = ρs/a in nor-
malised units, where a is the minor radius. The term involving ωT gives the background
gradient drive, with ωT = L−1

n + L−1
T (mv2/2T − 3/2), and the quantity χ = χ(x) where

χ′ ≡ ∂χ/∂x = 1/qR gives the ballistic streaming along unperturbed field lines, determin-
ing the connection length. The factor of J0 is the standard gyroaveraging operator. It is
applied in k⊥-space, consistent with the Dirichlet boundaries in x (the half-wave Fourier
transform in x is used).

At each time step, G is advanced to t = tn+1 knowing the complete information at
t = tn, tn−1, and tn−2, and then using G the field equations are solved in k⊥-space for φ
and A‖ and therefore also f and H, using the appropriate manipulations following from
the definitions.

The spatial grid is set up as in Ref. [12], capturing the dynamical scale range, re-
specting global consistency in the parallel wavenumbers [17], and representing the “thin
atmosphere” property of the edge so that Lx � Ly [2]. The velocity space grid extends to
−5 < z < 5 and 0 < w < 10, where T0 and B0 are normalising constants and z = v‖/Vα
and w = µB0/T0 are coordinates, with V 2

α = T0/mα for each species α. The background
FM is set equal for both species, hence Ti = Te. The discretisation is equidistant in all
five coordinates. The nominal resolution is 32× 128× 16× 16× 8 for x, y, s, z, and w,
respectively. The timestep is 0.02L⊥/cs.
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4. Results
The energy theorem for this model is derived in a manner similar to the gyrokinetic

particle models [18,19]. Not shown herein for space reasons, it is given in Ref. [20]. The
components of the energy theorem can be used to diagnose the physical processes in the
same manner as in drift fluid and gyrofluid models [2].

The standard case run with this model is qR/LT = 100 and βe = 10−4 and νeLT/cs = 1
and R/LT = 30 and Ln = 2LT with same LT = L⊥ for (e, i) and δ = 10δa = 0.015, run
into saturation (start amplitude 10−4, linear overshoot at t = 50, saturation after 200,
run to 1200, with times in units of LT /cs here and below).

Selected amplitude (‘n’ for ñe, ‘t’ for T̃e, ‘i’ for T̃i, ‘w’ for Ω̃ = ñe − ñi, ‘p’ for φ̃) and
zero-FLR estimated transport (‘n’ for ñeṽ

x
E, ‘t’ for 0.5T̃e‖ṽ

x
E, ‘i’ for 0.5T̃i‖ṽ

x
E, ‘T’ for T̃e⊥ṽ

x
E,

and ‘I’ for T̃i⊥ṽxE) spectra are shown in Fig. 1. The magnetic flutter spectrum Me = q̃e‖b̃
x

(not shown) is small but positive. As in previous electromagnetic gyrofluid (GEM) results
[2,21], Ω̃ is flat out to kyρs = 1, the amplitudes peak at long wavelength, and the transport
also at long wavelength but with a significant component coming from the 0.3 < kyρs < 1
nonlinear drift wave range where the density of states is higher. The transport spectra
appear much as in GEM, except for the difference between the ‘T’ and ‘t’ curves which
in GEM are much more similar. The velocity space structure of the electron and ion
ExB energy fluxes are also shown. Here we find the principal anisotropy signal, as the
population with µB/T ∼ 2 and v‖ ∼ 0 causes the most transport. This is attributable to
a weak adiabatic response for this population. It is not a trapping signature, as a control
case run without the trapping effect found the same result. The ions, by contrast, for all
of which v‖/qR� cs/L⊥ are relatively isotropic. Both species tend to have inward fluxes
for low energies, as found previously [22].

On the other hand, the transport scaling with the drift Alfvén parameter β̂ is very similar
to the GEM result, as shown in Fig. 2. The transport in gyro Bohm units (csρ

2
s/L

2
⊥ for

fluxes) is insensitive to β̂ until it begins to rise at about β̂ = 3. The cross correlation
and phase shift distributions for ñe versus φ̃, shown for β̂ = 1 and 5 in Fig. 3, reflect the
same transition to ideal ballooning found in GEM. Hence the results concerning the lack
of a scaling signature for the L-to-H confinement transition from the fluid and gyrofluid
models (cf. Ref. [21]) carry over to the gyrokinetic model. This transition is not explained
by local parameter scaling variations, at least not when checked by codes which carry all
the relevant scales (cf. also Ref. [5]).

In agreement with the GEM result, radial correlation lengths (not shown) are almost
always found in the range 5-7ρs irrespective of νe or βe, in agreement with observations in
the outer quarter of the plasma by radius [4]. When the limits associated with either ideal
(βe) or resistive (ν) ballooning at longer wavelength (lower ky) are reached, the correlation
length in the drift direction increases.

The edge-to-core transition may be represented by a linear temperature profile model,
by which Te = Ti and LT increase together coreward. The corresponding changes are made
in the parameters controlling collisionality and plasma beta. The change in the transport
spectra is shown in Fig. 4. The intermediate cases have the narrowest spectra. Here,
the parallel dynamics is most constrained while the curvature terms are still relatively
small compared to the linear drive and the collisional detrapping is still significant. The
change in the parallel envelope structure (not shown) reflects an increasing clarity in the
ballooning character as the mode structure becomes more core-ITG like. More study of
these phenomena will be forthcoming in the near future.
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5. Conclusions
This work describes the first use of the gyrokinetic computational model on tokamak

edge turbulence. The results are mostly qualitatively equivalent to those of the corre-
sponding 6-moment gyrofluid model (GEM) of Ref. [8]. The part of the electron popula-
tion with larger than thermal energy but small parallel velocity, however, acts almost as
a separate species, even in the absence of magnetic trapping. This is due to the fact that
with v‖/qR < cs/L⊥ they mostly avoid the adiabatic response. These electrons produce
a thermal flux comparable to that of the ions. The mostly parallel streaming electrons
contribute a positive but still small magnetic flutter transport. The transition into the
core shows a weakening of the electron drive and transport, with increasing dominance
of the more familiar core ∇Ti turbulence characterised by weakly nonadiabatic electrons
and a narrower drive spectrum. The resulting spatial inhomogeneity of not only the pa-
rameters but also the physical response may have a large role in the as yet unexplained
edge pedestal phenomenology.
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Figure 1: Amplitude and source/sink spectra (left, center left) for the nominal ITG edge
case (βe = 10−4 and qR/L⊥ = 100 and νeL⊥/cs = 1) as explained in the text. Every
feature is as found previously in the gyrofluid model, except for the electron temperature
anisotropy (‘t’ versus ‘T’). The gyro-Bohm level is 10−4. Velocity space dependence of
the electron and ion ExB energy fluxes (center right, right), showing the enhanced role
of the electrons with large µB but small v‖ (thermal velocity units). A control test with
the trapping terms removed found the same structure.
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Figure 2: Transport dependence (particle, electron and ion conductive ExB fluxes) upon
β̂, in gyro-Bohm units (csρ

2
s/L

2
⊥ for fluxes). This result is also similar to that from the

GEM model.

Figure 3: Cross coherence and phase shift distributions for ñe versus φ̃ in the nominal
case β̂ = 1 (left, center left). These are similar to the results from the GEM model. At
higher β̂ = 5 the cross coherence is lost and the phase shifts go to π/2, reflecting the
ballooning transition (center right, right).

Figure 4: Change in the transport spectra (format as in Fig. 1) from edge to core (left to
right) as explained in the text. The gyro-Bohm level is about 10−4. The value of R/LT
drops from 30 to 7.5 in the core.


