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Abstract. Using a global Landau fluid code in toroidal geometry, an ion temperature gradient (ITG)

driven turbulence-zonal mode system is investigated. Two types of zonal flows, stationary zonal flows in a

low q (safety factor) region and oscillatory ones in a high q region which are called geodesic acoustic modes

(GAM), are found to be simultaneously excited in a torus. Energy loop between the ITG turbulence and

the zonal flows in a low beta plasma is identified. The stationary flows suppress turbulent transport

effectively, while the suppression effect on the ITG turbulence by the oscillatory zonal flows is weak

compared to the stationary ones. Therefore the zonal flows are dominant over the ITG turbulence in

the low q region where the zonal flows are stationary. On the other hand, the ITG turbulence remains

active in the high q region where the zonal flows are oscillatory. Control of the turbulent transport may

be possible through the control of the zonal flow behaviour by the q profile.

1 Introduction

Suppression of anomalous transport or formation of transport barriers are necessary for
advanced tokamak operation with good confinement properties. Drift wave turbulence
including ion temperature gradient (ITG) turbulence has been studied extensively in
relation to the anomalous transport. The studies revealed that the drift wave turbulence
nonlinearly generates zonal flows which can suppress the turbulent transport. If the
zonal flows are stationary, they suppress the turbulence effectively. Recent local fluid
simulations in toroidal geometry[1, 2, 3] and tokamak experiments[4, 5, 6] have shown
that the zonal flows near the edge oscillate. The oscillation is called geodesic acoustic
mode (GAM) which can appear in toroidal plasmas[7]. The time dependent zonal flows
are less effective in suppressing the turbulence than the stationary ones[8]. Hence, it
is important in understanding the formation of transport barrier and controlling the
turbulent transport to investigate global variation of the zonal flow behaviour in tokamak
plasmas. In this paper, the zonal flow behaviour and nonlinear interactions between the
ITG turbulence and the zonal flows including both stationary and oscillatory modes in
tokamak plasmas are investigated in detail by a global electromagnetic Landau fluid code.

2 Model Equations

In the code, five-field (density n, electrostatic potential φ, parallel component of magnetic
vector potential A, parallel ion velocity v and ion temperature T ) Landau fluid equation
system is applied to describe the global electromagnetic turbulence in tokamak plasmas.
The highest moments (electron temperature and ion parallel heat flux) are approximated
by lower moments based on the Hammett-Perkins closure[9, 10]. In the electrostatic limit
with adiabatic electrons the five-field model reduces to the three-field ion Landau fluid
model. Nonlinear evolution equations for these fields consist of a continuity equation

dn

dt
= a

dneq

dr
∇θφ − neq∇‖v‖ + ∇‖j‖ + ωd(neqφ − pe) + Dn∇

2
⊥n, (1)
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a vorticity equation
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an equation of motion for the ion fluid in the parallel direction
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an equation of motion for the electron fluid in the parallel direction or Ohm’s law
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an ion temperature equation
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and parallel current is related with the magnetic potential through the Ampère’s law

j‖ = −∇2
⊥A‖, (6)

where, pe = τTeqn, neq (Teq) is an equilibrium density (ion temperature) normalized by
the central value nc (Tc), τ = Te0/Ti0 is a ratio of electron and ion equilibrium tem-
peratures, β = (ncTc)/(B

2
0/µ0) is a half of beta value evaluated on the plasma center,

ηi = d lnTeq/d lnneq, B0 is a toroidal magnetic field on the magnetic axis and Γ = 5/3 is
a ratio of specific heats. We assume a circular tokamak geometry (r, θ, ζ), where r is a
radius of magnetic surface, θ and ζ are poloidal and toroidal angles, respectively. Then
operators are defined as

df

dt
= ∂tf + [φ, f ], ∇‖f = ǫ∂ζf − β[A‖, f ],

ωd · f = 2
a

R0

[r cos θ, f ], [f, g] =
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r
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−
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∂r

)

where a and R0 are minor and major radii, respectively. Here the normalizations are
tvti/a → t, r/ρi → r, ρi∇⊥ → ∇⊥, a∇‖ → ∇‖,

a
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,
eφ

Tc
,
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vti

,
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βB0ρi
,
Ti

Tc

)

→ (n, φ, v‖, A‖, Ti),

where vti =
√

Tc/mi, ρi = vti/ωci, ωci = eB0/mi. Artificial dissipations (Dn, DU , Dv, DT )
are included to damp the small scale fluctuations.
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3 Global Structure of Zonal Flows in Tokamak Plasmas

Normalized equations describing the zonal flow behaviour in low β tokamak plasmas
consist of a zonal flow equation,

∂〈vE〉

∂t
= −

1

r2

∂

∂r
r2〈ṽErṽEθ〉 −

2

neq

a

R
〈p sin θ〉, (7)

a (1,0)-pressure equation,

∂

∂t
〈p sin θ〉 = −〈[φ̃, p̃] sin θ〉 + (Γ + τ)peq

a

qR
〈v‖ cos θ〉 + (Γ + τ)peq

a

R
〈vE〉, (8)

and a (1,0)-parallel ion velocity equation,

∂

∂t
〈v‖ cos θ〉 = −〈[φ̃, ṽ‖] cos θ〉 −

1

neq

a

qR
〈p sin θ〉, (9)

where 〈·〉 denotes the flux surface average, 〈vE〉 = ∂φ0

∂r
is the zonal flow, ṽEr = −1

r
∂φ̃
∂θ

and

ṽEθ = ∂φ̃
∂r

are E×B drift velocities in radial and poloidal directions, respectively, 〈p sin θ〉
is the (1,0) pressure perturbation, p = pi + pe = neqT + Teqn + τTeqn is total pressure
and 〈v‖ cos θ〉 is the (1,0) parallel ion velocity. Two modes of zonal flows are obtained
from the above equations without nonlinear terms. Neglecting nonlinear terms and time
derivatives in the above equations yields a stationary solution,

〈vE〉 = −〈v‖ cos θ〉/q, 〈p sin θ〉 = 0. (10)

The stationary zonal flows are accompanied with the parallel flows. In a low q region the
zonal flow term in Eq. (8) can balance with the parallel flow term and the stationary
zonal flow becomes dominant. On the other hand, the parallel flow term is very small in
a high q region. In this case the zonal flows oscillate with (1,0) pressure perturbations.
Eliminating 〈p sin θ〉 from Eqs. (7) and (8) in the q ≫ 1 limit yields the oscillation
equation,

∂2〈vE〉

∂t2
= −2(Γ + τ)Teq

( a

R

)2

〈vE〉. (11)

From the above equation, the pure GAM frequency,

ωGAM =
√

2(Γ + τ)Teq
a

R
, (12)

is obtained. Another important frequency is the parallel sound frequency of the (1,0)
mode,

ωsound =
√

(Γ + τ)Teq
a

qR
, (13)

which is obtained from Eqs. (8) and (9) in the q ≪ 1 limit. This frequency represents
the timescale of the dynamics parallel to the magnetic field for the (1,0) mode. Nonlinear
simulations show that the frequency plays an important role in determining the zonal flow
behaviour.

Using the developed global Landau-fluid code, we have performed electromagnetic ITG
turbulence simulations. Parameters used in the calculations are R/a=4, ρi/a=0.0125,
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Te=Ti, β=0.1%, neq = 0.8+0.2e−2(r/a)2 , Teq = 0.35+0.65(1−(r/a)2)2, q = 1.05+2(r/a)2.
The density and temperature profiles are fixed in the calculations. In these parameters
a dominant linear instability is the ITG mode. The numerical calculations are done by
Fourier mode expansion in the poloidal and toroidal directions and finite difference in
the radial direction. The Fourier modes included in the calculations are ones having
resonant surfaces between 0.2 < r/a < 0.8 in the range of m ≦ 80 and n ≦ 50, and
nonresonant (m, n) = (0, 0), (1, 0) components, where m and n are poloidal and toroidal
mode numbers, respectively. Only even toroidal modes are kept to reduce computational
time. The number of radial grid is 256. The artificial dissipations for finite (m, n) modes
are Dn = DU = Dv = DT = 9.375 × 10−8m4 in order to make the high (m, n) modes
like kθρi > 1(m > 50) linearly stable, 8 × 10−3 for the (0,0) mode and the resistivity is
η = 5 × 10−7.
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FIG. 1: Radial variation of zonal flow fre-
quency spectra. The pure GAM frequency
fGAM = ωGAM/2π and the pure parallel
sound wave frequency of the (1,0) mode
fsound = ωsound/2π are also plotted.

Figure 1 shows radial variation of the
zonal flow frequency spectra. The fre-
quency change of the zonal flows is
clearly seen in FIG. 1, in which the pure
GAM frequency fGAM = ωGAM/2π and
the pure parallel sound frequency of the
(m,n)=(1,0) mode fsound = ωsound/2π are
also plotted. The stationary zonal flows
are dominant in the inner low q region
(r/a . 0.45) and the oscillatory ones are
dominant in the outer high q region (r/a &
0.5). Main peaks of the oscillatory zonal
flows deviate from fGAM line. Besides the
oscillatory zonal flows have the same fre-
quency at a different radius. The zonal
flow behaviour, stationary or oscillatory,
depends on the relation between the fre-
quency of the oscillatory zonal flows (fZF)
and fsound. The (1,0) pressure perturba-
tions are necessary for the zonal flow oscillation. When fsound approaches fZF, the (1,0)
pressure perturbations relax along the magnetic field before they act on the zonal flows.
Then the stationary zonal flows become dominant in the low q region.

4 Interaction between ITG Turbulence and Zonal Flows
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FIG. 2: Time averaged 〈p sin θ〉 energy
drives as a function of radius.

It is important to identify the energy trans-
fer channel for the zonal flows. Energy of
both types of zonal flows are supplied from
the ITG turbulence via the Reynolds stress
which is the first term in the right hand side
of Eq. (7). Meanwhile, the geodesic transfer
due to the coupling with the (1,0) pressure
perturabations 〈p sin θ〉 is a sink for the zonal
flow energy in the present parameters. The
Maxwell stress drive is small compared to the
other drives because the beta is very small.
The Maxwell stress may play a role in zonal
flow energetics in high β plasmas. The two
kinds of zonal flows differ in the destination
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of 〈p sin θ〉 energy. Figure 2 shows time averaged 〈p sin θ〉 energy drives as a function of
radius. In the stationary zonal flow region (r/a . 0.45) most of the energy transferred
from the zonal flows goes to the (1,0) parallel ion flow 〈v‖ cos θ〉. The parallel flows satu-
rate by the nonliear energy transfer to the ITG turbulence and then the stationary zonal
flows also saturate[12]. On the other hand, the energy flow to 〈v‖ cos θ〉 in the oscillatory
zonal flow or GAM region (r/a & 0.5) is much smaller than that in the stationary zonal
flow region. Instead nonlinear energy transfer to the ITG turbulence is dominant. This
is the same result as the drift-Alfvén turbulence simulation in Ref. [2].
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FIG. 3: Ratio of zonal flow energy to
total E×B kinetic energy |∇φ0|
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as a function of radius and time.

When timescale of the zonal flows is much
longer than that of the turbulence, suppres-
sion of the turbulence by the zonal flows
is strong. Therefore the stationary zonal
flows suppress the turbulence effectively and
can dominate over the turbulence. Figure
3 shows a ratio of the zonal flow energy to
the total E×B kinetic energy |∇φ0|

2/|∇φ̃|2

as a function of radius and time. The ra-
tio in the inner low q region (r/a . 0.45) is
high because the stationary zonal flows are
dominant. On the other hand, the ratio in
the outer high q region is small. The ITG
turbulence in the region is not suppressed
strongly because the timescale of the oscilla-
tory zonal flows is of the same order as that
of ITG modes. It is noted that FIG. 3 was
obtained from the simulation including the
n = 0 modes with higher poloidal modes like (2,0), (3,0) and so on. In this case the
energy of the (1,0) pressure perturbations partly goes to the (2,0) mode. Then the zonal
flows, especially the oscillatory flows, are more reduced. Thus the stationary zonal flows
in the low q region are favourable for the suppression of the turbulence. Figure 4 shows
time averaged heat flux as a function of radius for q = 1.05 + 2(r/a)3.5 (solid line) and
q = 1.05+2(r/a)2 (dashed line). The stationary zonal flow region for q = 1.05+2(r/a)3.5

(r/a . 0.6) is wider than that in the previous case (r/a . 0.45). The expansion of the
stationary zonal flow region or the reduction of the oscillatory zonal flow region decreases
the heat transport as shown in FIG. 4.
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FIG. 6: Frequency spectra of zonal flows in reversed shear plasmas for (a)
q=2−3(r/a)2+4(r/a)4, (b) q=1.9−3(r/a)2+4(r/a)4 and (c) q=1.8−3(r/a)2+4(r/a)4.
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FIG. 7: Heat flux as a fuction of radius and time in the cases (a) q=2−3(r/a)2+4(r/a)4

and (b) q=1.8−3(r/a)2+4(r/a)4, and (c) the time averaged heat flux.

5 Zonal Flows in Reversed Shear Plasmas

In tokamak experiments with a reversed magnetic shear configuration, internal transport
barriers (ITBs) were observed near the minimum q surface. The formation of ITB by
a rarefaction of resonant surfaces in the qmin region was reported based on global ITG
simulations without nonresonant modes[13]. On the other hand, linear analysis including
the nonresonant modes showed that the slablike ITG mode which has the significant non-
resonant mode may appear in the qmin region[14]. Another simulations with nonresonant
modes also showed that no gap of the turbulent transport exists in the qmin region[15].
From the point of view of the zonal flow behaviour, it is expected that the staionary
zonal flows are easily excited in the qmin region where fsound is high. In this section we
investigate the zonal flow behaviour in the reversed shear tokamaks. We take the electro-
static limit (β = 0) and the electron response is assumed to be adiabatic here. The other
parameters except the q profile shown in FIG. 5 used in the calculations are the same as
those of the previous case. Nonresonant modes are included in all calculations because
it is confirmed by linear calculations that the nonresonant modes have large amplitude
in the qmin region as reported in Refs. [14, 15]. Figure 6 shows frequency spectra of
zonal flows in the reversed shear plasmas. In FIG. 6 (a) the oscillatory zonal flows are
dominant. The frequency peaks deviate from fGAM and some peaks are located at the
same frequency over a wide radial region. It is seen that increase of fsound by decreasing
q makes the stationary zonal flows dominant like the positive shear case. Figure 7 shows
heat flux as a fuction of radius and time in the cases (a) q=2−3(r/a)2+4(r/a)4 and (b)
q=1.8−3(r/a)2+4(r/a)4, and (c) the time averaged heat flux. The heat flux shown in
FIG. 7(a) and its time average (red line in FIG. 7(c)) is large over a broad radial region
because the oscillatory zonal flows are dominant. When the stationary zonal flows are
dominant, the heat flux is reduced as shown in FIG. 7(b) and FIG. 7(c). It is noted that
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the heat flux on the minimum q surface (r ≃ 0.61) is large and the heat flux near the
maximum fsound surface (r ≃ 0.5) is relatively small.

6 Summary

We have performed the ITG turbulence simulations in tokamak plasmas using the de-
veloped global Landau-fluid code. Two types of zonal flows, stationary and oscillatory
modes, are possible in tokamak plasmas. The zonal flow behaviour depends on the relation
between the parallel sound frequency of the (1,0) mode fsound and the frequency of the os-
cillatory zonal flows fZF. In the low q region where fsound ∼ fZF, the stationary zonal flows
are dominant. The stationary zonal flows suppress the turbulence effectively and become
dominant over the turbulence. On the other hand, the zonal flows in the high q region
oscillate with the (1,0) pressure perturbations 〈p sin θ〉 at fZF(> fsound). The oscillatory
zonal flows are less effective in suppressing the turbulence. The two kinds of zonal flows
differ in the energy loop between the ITG turbulence and the zonal flows. For the sta-
tionary zonal flows, the energy loop is ITG→ZF → (〈p sin θ〉) → 〈v‖ cos θ〉 →ITG. On the
other hand, the energy loop for the oscillatory zonal flows is ITG→ZF→ 〈p sin θ〉 →ITG.
The turbulent transport can be controlled through the control of the zonal flow behaviour
by the q profile.
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