Using Neutron Generator with APT/NNA for Detection of Explosives

Andrey Kuznetsov

V.G. Khlopin Radium Institute, St.-Petersburg, Russia

Presentation Layout

- Nanosecond Neutron Analysis/ Associated Particles Technique (NNA/APT)
- Prototype NNA/APT device
- Data Analysis
- Experimental Results

Measurements with small objects

Measurements with luggage

Measurements with containers

Conclusions

5 August 2005

NNA/APT

NNA / APT allows one to obtain a 3D image in terms of elemental composition 3 4 5 of the inspected volume. 2 9 6

3D position resolution:

time-of-flight: in-depth (Z)

5 August 2005

Prototype NNA/APT device

Neutron generator with 9-segment αdetector.

 One or two BGObased γ-ray detectors.

 Electronics in a single 3U-high crate.

RF connection to a remote Notebook PC.

5 August 2005

Prototype NNA/APT device

Characteristics of the existing APT/NNA device

Explosives detection limit	100 g in tens of seconds	
Detection method	Nanosecond neutron analysis (NNA) with	
	spatial resolution (APT technology)	
Decision-taking algorithm	Automatic	
Simultaneously inspected area	$30 \times 30 \times 30 \text{ cm}^3$	
Spatial resolution	7-8 cm in-plane, 8-10 cm in-depth	
Total mass of the device	not more than 20 kg	
Dimensions	$70 \times 45 \times 20 \text{ cm}^3$	
Radiation safety	Safe when switched-off	

Portable Electronics

Digital: pulses from BGO are digitized, and full analysis (energy, time, pileup...) is done by a dedicated DSP on-line.

Scalable: many γ -detectors can be serviced, each by a fully independent gamma-detection module (up to 12 fit into a single crate).

- Alpha-detection module can handle count rates up to 10⁷ α/s with dead time depending only on signal's length.
- Gamma-detection modules can handle count rates up to 10⁶ γ/s per second from BGO- or Nal-based gamma-ray detector each.

5 August 2005

Automatic Data Analysis

2005

Experimental Results

Measurements with imitators of explosives (RDX, TNT, C4, nitroglycerine, PETN); weight of mixture 300g, packed in 24g "Cola" cans.

- Measurements with common objects and explosives' imitators in passenger luggage.
- Measurements with multiple luggage items in containers.

Measurements with small objects

Dependence of the experimentally determined concentration of nitrogen in 300g RDX and sugar samples in 24g cans on measurement time

5 August 2005

Measurements with small objects

Location of points corresponding to 300g RDX and sugar samples in the space defined by the first two components of the PCA for different measurement times

5 August 2005

Measurements with Luggage

Filling of the suitcase, for which measurements were done: cotton and wool clothes, CDs, book, water, wax, soap, vodka, and 1kg TNT imitator under soap (mostly in segment #9).

Measurement time: 60 s Decision-taking procedure automatically shows the threat level for all nine segments

🌈 Threat level		
0%	0%	1%
0%	100%	6%
0%	0%	0%

Measurements with containers

Two boxes, each with 0.5kg TNT imitator, were hidden among similar boxes with washing powder (a total of 36 boxes).

5 August 2005

Measurements with containers

No contrast on oxygen. A lot of extra carbon. Some extra nitrogen.

Distribution of carbon mass along the in-depth coordinate

for "voxels", corresponding to two segments of the α -detector: one containing only washing powder (red) and another containing TNT at "depth" about 10 cm behind two boxes of washing powder

5 August 2005

3D NNA Scanner

Left: one NNA/APT basic module consisting of one APT neutron generator and 12 gamma-ray detectors. *Right:* "3D NNA Scanner" for Inspection of Sea Containers. 1 – NNA/APT basic modules. 2 – neutron detectors. 3 – volume inside the 40'-high sea container screened by one "measurement module". 4 – construction frame. 5 – remote control and data analysis module

5 August 2005

3D NNA Scanner

5 August 2005

Conclusions

- The existing portable device can automatically identify 300g of organic substance in 30÷60 seconds.
- The existing portable device can automatically detect explosives hidden inside midsize suitcase filled with various organic materials.
- The existing portable device can detect several hundred grams of concealed explosives within tens of seconds at distances about 50cm and within several minutes at distances around 1 meter from the NG target.
- Work is under way to create a full-scale NNA/APT basic module, which can serve as a component for large-scale devices for inspection of cargo containers and luggage.

Acknowledgements

This work has been supported in part by:

- International Atomic Energy Agency (IAEA), Contracts #10986 and #12600 (2001 – 2006).
- International Science and Technology Center (ISTC) Project #1050 (2000-2003).
- US Civilian Research and Development Foundation (CRDF), Project #RP2-564-ST-03 (2004-2005).
- NATO Science Committee, Science for Peace Project #981003 (2005 – 2006).
- Russian Foundation for Assistance to Small Innovative Enterprises
- APSTEC Ltd., St.-Petersburg, Russia (2005)

5 August 2005