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Detection-of explosives in the trade system :
countermeasures against illicit trafficking

Special report Container trade [ Cabmist ey & i . . .
The size of the container industry is

enormous : in FY 2002 the world’s
total movement in containers
amounted to-about 72 M TEU
(““Twenty-foot Equivalent Unit) that
are transported by ships:and
deposited inside the harbours
Customs areas.

There is an increasing risk

that sizeable amounts of i

“threat materials”, including  § S on -
. . . -  AMERICA

explosives, be hidden in . )

cargo and transported by .

means of the standard

ovement of containers* [____

commercial network. Tedm, 2001
—{0.0]

*Arrows represent |
trade-flows, not routes |
| Source: HP.-Drewiry |
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Present inspection
systems at ports are

||| ! rl = iT'lm based on x-ray or y-ray
&G m aﬁlr S | radiography.
gph =
-3 ﬁ! H- - — : Courtesy of SAIC, San Diego,

[ P il x CA, USA
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Although the pictures
are rather detailed and

3D 1maging is possible,
the number of suspect

unidentified areas is still
high.




Chemical composition of different materials
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Neutron induced reactions

14 15N /

a8 . ~ Thermal neutron capture

moderator

Inelastic scattering
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y-ray transitions of relevant elements
(MeV)

Element capture inelastic

2.2 none

4.42
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TNIS : Tagged Neutrons Inspection
System based on the “Associated Particle
Technigque®

In the d + t reaction a
neutron with energy of 14
MeV and an alpha particle
with energy of 3.5 MeV
are emitted “‘back-to-
back’ in the COM.




w0l Alpha-Gamma time-of-flight and
ool gamma energy signals are recorded
o] and used to recognize the elemental
o composition of a well defined

- w‘w/ﬁ irradiated area.
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Effect of the time windows on the samma
ray specirum

Different elements
are detected in
different volume

1pha particle

garuma detector

neutron bearm

cells (““voxels”)
using the tagged
neutron beams.




The experimental setup at the Institute Ruder
Boskovic in-Zagreb (Croatia)

Beamlines dedicated to inspection of suitcases and containers for
airport and harbour security




The alpha particle detector is a YAP(Ce) crystal of

40 mm diameter and 0.5 mm thick, read out by a
Hamamatsu R1450 PMT.

| YAP:Ce 0.5-1 mm

40000 1mm: X({alpha) = 1696ch X(59keV) = B3ch
B 0.5mm: X{alpha) = 1883ch X(59keV) = 7Och
35000 1 1mm : A{S59)/Afalpha) = 0.51
P :7 0.5mm: A(S9yAalpha) = 0.32
Energy resolution of i
25000 [—H
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Irradiation of a 10x10x10 cm.
graphite sample hidden inside the
suitcase

Right: alpha-gamma timing

spectrum

Left : gamma energy.gated on the
“graphite” in the timing Spectrum
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Effect of the bottle of
water on the alpha-gamma
timing spectrum, one can
clearly see the component
added at shorter time.

Inserting a bottle of water inside
the suitcase 1n front of the
graphite sample.
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Present development : a portable sealed neutron
generator with the associated particle detector (TPA)

o

A portable sealed neutron generator capable of
delivering 10exp8 neutrons/second.

Mounting the alpha particle detector inside the
neutron generator.




First results with the TPA

Time distribution
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Layout of a container inspection station

n-detectars




YAP:Ce + 3 PMT's

YAP:Ce detector (® = 40 mm, + = 0.5 mm)
read by 3 PMT's Hamamatsu R4141 (& = 13.5 mm)




Study of position sensitivity

the light collection efficiency depends on the relative
DPomt € Pyapice =2  position of the alpha particles hitting the detector surface
with respect to the PMT center (d.oyrce-pm)

X=1253 ch
FWHM = 144 ch
X,= 962 ch
FWHM = 182 ch
X,=524 ch
FWHM = 215 ch

Assumption: Gaussian pulse height distributions . Amplitude
dependent only on d. cepmt )

Parameterization of the amplitude and width [ Sigma
values as a function of d ,, cc.pmt 2
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dsource-PMT center




Reconstruction algorithm

Picalc . (AilcalC, Aizcalc’ Ai3C°'C)

| |
(Gilcalcl Gizca C, Gi3ca c)

P exp : (AleXp/ AP, A3exp)

Looking for the
coordinates that
minimize the
function f(x,y)

Entries 2338
Mean x 0.09359
Mean y -1.997
RMS x 0.8258
RMS y 0.7255




YAP:Ce + multi-anode PMT

YAP:Ce detector (® = 40 mm,
h=0.5 mm)

read by a 2x2 multi-anode
PMT Hamamatsu R5900U-00-

M4 (18x18 mm?) i
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Test with 2 graphite samples

Neutron beam




Results from the “Center of Gravity” method

Pros:
-Use of a single, large YAP(Ce) crystal

*Position resolution of the order of 2 mm (may improve)

Is it possible to achieve a suitable position resolution by simple
“threshold” discrimination on the fast PMT signals ?




64-elements array “alpha tracker” setup

64-eleme
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The H8500 PMT was coupled to the matrix

YAP(Ce) crystals by a 4 mm thick quartz
window. The system was irradiated with
an alpha source through a 2 mm pinhole
collimator
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The four crystals indicated by the red square
have been irradiated simultaneously through a
square collimator.

The red arrows show the position of the “direct
alpha hit” signakin the amplitude spectrum for

each crystal.
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Conclusions:

» The use of the “associated particle technique” to tag 14 MeV
neutrons for inspection of cargo improves the quality of the y-ray
spectra largely reducing the background (up to a factor 50)

* Inspection of large items with miscellaneous loads (like a
maritime container) requires the identification of a suitable size
“voxel” to be irradiated

» The use of YAP(Ce) scintillators as alpha particle detectors'for
the tagging system is fully compatible with a sealed neutron
generator

* It is possible to reach a “voxel” size of about 30x30x30 cm3 in any
location inside a container using an array of small crystals coupled
to a suitable position sensitive PMT




First test on the detection of fissile
NEEEL

YAP:Ce iy target
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TOF spectra for Pb and DU
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Time of Flight spectra with y—y coincidences
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