International Symposium on Utilization of Accelerators

Dubrovnik, Croati 5 – 9 June 2005

Optimisation of Accelerator Reliability for ADS: Example of SC Cavities and the Associated RF Power Couplers

Lucija Lukovac

Accelerator specifications

STATISTICS OF THE STATE OF THE STATE

Division Accélérateurs

Component	Z	MTBF,	Failures	MTTR,	Down
	un	khr	year	hr	Time/
SNS	lbe				year,
	ľ				hr
Klystron	81	50	9.72	4.5	43.7
Wave	81	150	3.24	3.0	9.72
Guide					
Load	81	75	6.48	3.0	19.4
Circulator	81	50	9.72	3.0	29.2
Converter/	7	22.6	1.86	4.0	7.43
Modulator					
Transmitter	14	5.6	15	3.0	45.0
Window	81	100	4.68	24.0	116.6
LLRF	81	100	4.68	2.0	9.73
Totals			55.7		280,8

Critical area: the RF system

Table 4. Down time allocation for the 805 MHz, Super Conducting (SRF) RF System.

Critical area: the RF system

Division Accélérateur

Université de Paris-Sud

IONAL DE PHYSIQUE NUCLEAIR

ISUA meeting Dubrovnik 5-9 June 2005 L. Lukovac

Consequences of cavity failure

We have a non-relativistic proton beam

Any energy loss will imply a phase slip along the linac increasing with the distance, beam can get out of stability region

$$\delta \phi = 2\pi \left(\frac{\delta z}{\lambda} \right) \left(\frac{\delta \beta}{\beta^2} \right)$$

 β is the beam velocity λ the RF wavelength $\delta\beta$ the velocity loss at δz

most critical sections

Consequences of cavity failure

If the synchronous phase or/and the accelerating field is too high, the beam is TOO LATE & leaves the stability region: the beam is lost

Beam dynamics simulation with TraceWin

Need to have linac design that can handle the loss of one or several cavities

The <u>modularity</u> of our LINAC makes this possible because we have <u>INDEPENDENTLY PHASED structures</u>

We need to find procedure that use the neighbouring cavities to compensate phase/energy beam offset

These procedures should then be integrated in RF control system

Study has been	#			Emittance growth (%)		# of retuned		Max	Max	# retuned
	faulty	section	Final			cavities	Max ∆Eacc	E _{pk} (SP)		auads
applied to most	cavity	0001011	energy	Transv.	Long.	(bef + aft)	(%)	or	(%)	(bef + aft)
representative	outity			.	<u> </u>	(2011:010)		B _{pk} (EL)	(,,,)	(001 + 0.1)
representative	0	-	Nominal	+ 5 %	0%	-	-	-	-	-
cavities in all		SP 0.15	Nominal	+ / %	+ 4 %	0+4	+ 67 %	19 MV/m	+ 67 %	0 + 4
	2	SP 0.15	Nominal	+ 9 %	+ 12%	1+3	+ 90 %	19 MV/m	+ 00 %	0+4
sections (Deginning,		SP 0.15	Nominal	+ 10%	+ 12%	2+3	+ 94 %	15 MV/m	+ 35 %	4+2
half and end of	19	SP 0.15	Nominal	+ 5 %	+ 4 %	2+3	+ 38 %	24 MV/m	+ 48 %	2+4
	20	SP 0 15	Nominal	+9%	+ 4 %	3+2	+ 37 %	26 MV/m	+ 58 %	2+2
each section)	35	SP 0.15	Nominal	+ 6 %	0 %	2+3	+ 20 %	32 MV/m	+ 27 %	2+2
•	36	SP 0.15	Nominal	+ 7 %	+ 4 %	3+3	+ 22 %	34 MV/m*	+ 32 %	2+2
	37	SP 0.35	Nominal	+ 6 %	0%	3 + 2	+ 22 %	35 MV/m*	+ 34 %	2 + 2
	38	SP 0.35	Nominal	+7%	+ 6 %	3 + 4	+ 29 %	31 MV/m	+ 26 %	2 + 2
	39	SP 0.35	Nominal	+ 5 %	+ 5 %	4 + 2	+ 24 %	36 MV/m*	+ 35 %	4 + 2
In every case	61	SP 0.35	Nominal	+ 6 %	+ 2 %	2 + 3	+ 25 %	31 MV/m	+ 26 %	2 + 2
	62	SP 0.35	Nominal	+ 6 %	0 %	2 + 2	+ 26 %	31 MV/m	+ 28 %	2 + 2
the beam can be	63	SP 0.35	Nominal	+ 5 %	+1%	3 + 2	+ 25 %	31 MV/m	+ 27 %	2 + 2
	94	SP 0.35	Nominal	+ 6 %	+ 2 %	3 + 3	+ 16 %	29 MV/m	+ 18 %	4 + 2
transported up	95	SP 0.35	Nominal	+ 7 %	-1%	3 + 3	+ 22 %	31 MV/m	+ 29 %	4 + 2
	96	SP 0.35	Nominal	+ 5 %	+1%	4 + 2	+ 21 %	30 MV/m	+ 25 %	4 + 2
to high energy	97	EL 0.47	Nominal	+ 6 %	0%	3 + 3	+ 18 %	59 mT	+27 %	4 + 2
··· 1 100%	98	EL 0.47	Nominal	+ 6 %	0%	3+2	+ 23 %	62 mT	+ 31 %	4 + 2
with 100%	109	EL 0.47	Nominal	+ 6 %	0%	3+3	+ 20 %	60 m l	+ 28 %	4 + 2
	110	EL 0.47	Nominal	+6%	0%	3+2	+ 20 %	60 m I	+ 29 %	2+2
transmission,	123	EL 0.47	Nominal	+ 6 %	0%	2+4	+ 20 %	60 m T	+ 26 %	4 + 2
amall amittanaa	124	EL 0.47	Nominal	+ 6 %	0%	3+3	+ 19 %	60 mT	+ 28 %	4+2
small emittance	120	EL 0.65	Nominal	+ 5 %	0%	2+3	+ 10 %	59 III 1 61 mT	+ 21 %	4+2
enswthe nominal	120	EL 0.05	Nominal	+ 5 %	0%	3+4	+ 21 %	61 mT	+ 25 %	4+2
growins, nominal	146	EL 0.05	Nominal	+ 5 %	0%	3+3	+ 18 %	59 mT	+ 22 %	4+2
nonomotons	147	EL 0.65	Nominal	+ 6 %	-1%	3+4	+ 19 %	60 mT	+ 22 %	4+2
pur unierer s	148	EL 0.65	Nominal	+ 6 %	-1%	3 + 3	+ 20 %	60 mT	+ 22 %	4 + 2
	173	EL 0.65	Nominal	+ 5 %	0%	3 + 4	+ 17 %	59 mT	+ 19 %	4 + 2
	174	EL 0.65	Nominal	+ 5 %	0 %	3 + 3	+ 18 %	59 mT	+ 22 %	4 + 2
Oulyfan	175	EL 0.65	Nominal	+ 5 %	0 %	4 + 4	+ 17 %	59 mT	+ 18 %	4 + 2
Unly for	176	EL 0.85	Nominal	+ 5 %	0 %	3 + 5	+ 18 %	59 mT	+ 22 %	4 + 2
$E \neq 10 M eV$	177	EL 0.85	Nominal	+ 5 %	0 %	4 + 4	+ 18 %	59 mT	+ 20 %	4 + 2
	178	EL 0.85	Nominal	+ 5 %	0 %	5 + 4	+ 18 %	59 mT	+ 19 %	4 + 2
increase above	179	EL 0.85	Nominal	+ 5 %	0 %	6 + 4	+ 17 %	59 mT	+ 16 %	4 + 2
inci euse unove	184	EL 0.85	Nominal	+ 5 %	0%	4 + 3	+ 17 %	59 mT	+ 29 %	2 + 2
30% is necessary	185	EL 0.85	Nominal	+ 6 %	0%	5+2	+ 19 %	60 mT	+ 30 %	2+2
JO 70 13 NECESSULY	186	EL 0.85	Nominal	+7%	0%	6+1	+ 21 %	61 mT	+ 33 %	2+2
	187	EL 0.85	Nominal	+6%	0%	7 + 0	+ 25 %	63 m T	+ 37 %	2 + 2

Low Level RF Fast Feedback System

Collaboration IPN Orsay and LPNHE Paris

Scheme of a RF Power Coupler

L. Lukovac ISUA meeting Dubrovnik 5-9 June 2005

Different window geometries

Basic parameters

- 352.2 MHz
- Nominal power: 10 kW
- Capacitive coupler for CW operation

IPNO PhD dissertation by C. Mielot (2004)

FIG. 4: Several window geometries: a) disk with chokes; b) disk without chokes; c) cylinder

Different window geometries

Window type	Disk with chokes	Disk without chokes	Cylinder	"Guide/coaxial"	"T"			
S ₁₁ (dB)	-55,4	-58	-45,17	-60	-40,2			
Band-width (MHz)	>1000	760	410	6	8			
E _{surf} max (V/m)	1,18.10 ⁵	1,24.105	1,50.10 ⁴	1,24.10 ⁴	2,30.10 ⁴			
Losses (W)	60	71,75	68,2	147	33			
% P $_{\rm losses}$ / P $_{\rm incident}$	0,30%	0,36%	0,34%	0,74%	0,17%			
Window volume (mm ³)	2,86.10 ⁴	a)		6)	7.10 ⁵			
Voluminal losses (W/mm ³)	2,10.10-3							
	-	c)						
		FIG. 4: Several window geom	setries: a) disk with ch	okes; b) disk without chokes; c) cyl	inder			

TABLE 3: Comparison of main parameters for different window types

THE PLAT

Perspectives

Fault tolerance study as a part of the overall reliability study for ADS class accelerators has reached the stage of experimental validation.

Low level RF system:

> currently under construction

> tests on SPOKE cavity foreseen for end 2005

RF power coupler

> thermo-mechanical study under way

- > construction to start in fall 2005
- > conditioning at room temperature foreseen for summer 2006

Perspectives

Tests of all components for a cryomodule : LLRF digital system + RF power coupler + SPOKE cavity in horizontal cryostat foreseen for 2007

