High throughput, high precision ¹⁴C AMS with a small accelerator

John Southon, Guaciara Santos, Ellen Druffel, Sue Trumbore, Xiaomei Xu, Sheila Griffin Earth System Science Dept, University of California, Irvine

- Our laboratory was set up to apply ¹⁴C AMS to carbon cycle research questions.
- Funding came from the W.M.Keck Foundation and UC Irvine.
- High sample throughput and high precision are both important
- What does it take to measure thousands of sample per year?

The UCI AMS spectrometer (made by NEC)

(3rd production model - has extra beam diagnostic, steerers, pumps)

Moving the spectrometer 7/8/03 (end of the first day)

Here's what you get for \$1.35M (We knew it would work, now we have to use it efficiently)

Sample preparation is a major AMS bottleneck (raw sample > clean sample > CO₂ > graphite)

- Three sample preparation labs in UC Irvine Earth System Science Dept
- Unprocessed samples plus CO₂ plus graphite from outside submitters

Simplify routine chemical pretreatment, work in parallel not in series

Prepackaged reagents, disposable glassware and pipettes, etc. Batch processing, multiple heads for combustion tube pumpout

Carbonate sample preparation

Samples are leached and hydrolyzed in disposable blood vials

Graphitization

- CO₂ + 2H₂ -> C + 2H₂O (Fe catalyst)
- 24 hydrogen-reduction graphite reactors (2 samples per head per day)
- PLUS Zn + TiH₂- reduction (sealed tube) graphitizations (40/day)

Packing graphite into sample holders (Keep it simple)

An AMS system (slightly simplified)

- AMS transmission efficiencies for radiocarbon (ions detected as a fraction of source output) are 35-50%
- Ion source currents for C⁻ vary from a few microamps to >300µA

Ion source output determines spectrometer throughput

MC-SNICS: Cs ion source

Serviceability

If you can't work on it, how can you maintain or improve it?

Track system for in-place servicing

Cs feed (i) New Cs oven - easier to fill

Cs feed (ii)

New source body: better control of Cs, extra cooling

Better pumping New extractor/lens assembly

Spherical ionizers (NEC, Spectramat) Better focusing, sample used more efficiently

Ion source performance

- Typically 120-150µA of C⁻ at 7.5kV cathode voltage, (best ever: 275µA).
- Count rate for Modern carbon 450-500 counts/sec.
- About 50 wheels per 5g of Cs.
- Wheel change time < 1 hour.
- Source/ionizer cleaning and bakeout time < 6 hours (every few weeks).

Data analysis: keep it simple (Do NOT attempt to "rescue" problem runs)

What happens when the boss is in Dubrovnik? Answer: the lab runs just fine

You can't have high throughput without good people (lots of them) who are well trained

- Number of staff and students who can prepare samples: 10
- Number who can change sample wheels and tune and operate the spectrometer: 6
- Number who can analyze data: 10
- Number who can completely rebuild the ion source: 2

Conclusions

- A small commercially available AMS system can produce thousands of high precision analyses per year.
- Few hardware changes are necessary apart from ion source modifications.
- Extensive sample preparation facilities are required.
- It won't work without enough well trained people.

Thanks to: the W.M.Keck Foundation; the Dean of Physical Sciences, UC Irvine; NSF (EAR/IF 0326205); and our student helpers