

Disinfection of Total Coli-forms in the Effluent from Municipal Wastewater Plant with e- Beam

June 07, 2005

Yuri Kim, Bumsoo HAN, Jinkyu Kim EB TECH Co.

International Symposium on the Utilization of Accelerators of IAEA, Dubrovnik, Croatia

- Introduction
- Experimental
- Results and discussion
- Summary

Principles of Wastewater treatment with electron beam

Application of e-beam on water/wastewater treatment

- -. Wastewater from Textile Dyeing Companies
- -. Wastewater from Papermill
- -. Leachate from Sanitary Landfill
- -. Wastewater containing Heavy metals (Cd,Hg,Pb,Cr⁺⁶)
- -. Re-use of effluent from Municipal wastewater plant
- -. Remediation of contaminated water (PCB, Explosives)
- -. Contaminated Underground water
- -. Drinking water

Annual Rainfall of Korea and other countries

Average Annual Rainfall : 1.3 greater than World average

Population density : 3rd in the World Annual Rainfall per capita : 1/11 of World Average

Monthly Rainfalls in Korea and other countries

Usage of Annual Rainfalls (Data from Ministry of Environment)

Supply and demand of fresh water in Korea

(10⁸m³/year)

	1994	2001	2006	2011
Demand Supply	29,901 32,219	33,640 34,290	34,991 34,541	36,652 34,655
Shortage	_	-	450	1,997

Average annual rainfall in Korea is 1.3 times greater than that of World, but it varies too much with season and area to control for withdrawal. Only 24% of rainfall could be accessible for human uses.

The goal of irradiation on municipal wastewater

- -. Removal of COD, BOD ?
- -. Decrease of T-N, T-P ?
- -. Removal of Color, Odor ?
- -. Decrease the number of microorganism and re-use

Why Electron Beam Processing?

- Control the number of coli-forms in the effluent
- Remove odor, color and reduce other residues for re-use in irrigation or industrial purposes
- Bio-system is no good to control the number of e-coli
- Ozone, UV and others are not good for large quantity

Comparison of Disinfection systems

Chlorination	UV radiation	Ozone	Electron beam
Enhances color removal.	Effective against bacteria & viruses at	More effective than chlorine for inactivation of viruses.	Very effective against bacteria & viruses at low dose. Enhances color, taste
Effective biocide	low dosages.		& odor.
Least expensive		Biocidal activity is not	Simple design and
disinfection.		influenced by pH.	feasible to large scale.
Forms THMs. Chlorine gas is a	Water with high calcium, turbidity & phenols may not be applicable to UV	byproducts are formed (bromide, aldehydes, ketones).	Needs Shielding (X-ray)
hazardous corrosive gas.	disinfection. Maintenance cost of UV lamp is high.	Initial cost of ozonation equipment is high.	

Status of Municipal Wastewater Treatment in Korea

Municipal Wastewater plant	: 279
Total amount of water treated	l : 18,399,000 ton/day
Capacity	: 80% of total municipal wastes
	95% for 195 main stream area

- Mainly activated Sludge Process
- Good to remove Suspended Solids and Organic matters
- However, not sufficient for remove T-N, T-P and microorganisms

 \rightarrow New Technology Required

Control of Wastewater in Daejeon City

	BOD (mg/l)	COD (mg/l)	SS (mg/l)	T-N (mg/l)	T-P (mg/l)	E-coli ^(a) (CFU/ml)
Influent (average)	115.1	127.4	201.8	34.2	4.5	N/A
Regulation for effluent	<20	<40	<20	<60	<8	<3000
Under Control	<14	<14	<15	<25	<1.5	
As of July 10, 2002	8.9	11.2	7.2	16.2	4.3	28,000

(a: Effective from 2003)

Experimental Methods

lt	Condition		
Electron Accelerator	Beam power (MeV)	1	
Reactor [Nozzle type]	Flow (ton/day)	50	
	Dose (kGy)	0.2 – 1.0	
	Velocity (m/sec)	3	
Analysis items	e-coli Total coli-form BOD, COD, SS, TOC	Membrane Filter Membrane Filter Standard methods	

Electron Beam Irradiation System

Nozzle type injector for Irradiation

Decrease of Coli-form upon irradiation

Q = 50ton/day		E-Coli (CFU/ml)			Total Coli-form (CFU/mI)		
		Max.	Min.	Ave.	Max.	Min.	Ave.
Un-chlorinated Secondary Effluent		14,000	800	4,200	820,000	140,000	440,000
	0.2kGy*	770	20	300	42,000	1,300	20,000
Electron	0.5kGy	170	20	50	42,000	1,300	3,000
Beam	0.8kGy	<30	<30	<30	1,800	160	400
	1.0kGy	<30	<30	<30	760	30	100

Variation of microorganisms in Sewage effluent

Radiation induced inactivation of some coliforms in different

effluents by means of electron beam irradiation (P. Gehringer et al., "High energy electrons for reclamation of effluents from municipal wastewater treatment plants", IWA 5th Congress, Morocco 2004

Disinfection Mechanisms by E-Beam

• Direct action

Indirect action : Radical reaction

Direct effect as well as indirect effect through water radiolysis products damage DNA and stop reproduction

Base Pair damage

Single strand break

Double strand break

Intra molecular cross-linking

Intermolecular cross-linking

S. Sabharwal, et al., "Technical and Economic Aspects of Radiation Hygienization of Municipal Sewage Sludge Using Gamma Irradiator" IAEA CM, Bulgaria 2004

Variation of DNA at E. Coli before and after electron beam irradiation (Electrophoresis)

Variation of BOD, COD, TOC & Color

Design and Estimation of E-beam plant

- -. For Treating Effluent from Municipal Wastewater Plant or from the Contaminated Ground water
- -. To re-use in Irrigation or Industrial purposes
- -. Design Basis
 - +. Capacity : 100,000 m³/day
 - +. Dose : around 0.2 kGy
 - +. Expectation : Remove microorganisms over 99% Reduction in Color, Odor etc.
 - +. Operates year-round
- -. When combined with Bio-system, could be applicable to reduce T-N,T-P and residual organics.

	items		Investment	Remark
	Construction	Accelerator	2,000k\$	400kW
Investment		Facilities	1,000k\$	Shield room
		Others	1,000k\$	
	Sub-total		4,000k\$	
	Ar	Area		
	Items Annual Cost		Re	emark
	1. Labor	100k	\$	
	2. Electricity	320k	\$ 800kW*0.05	§/kWh*8000hr
Operation	3. Maintenance	80k	\$	
	4. Interest	(320ks	\$) 8%	
	5. Depreciation	(200ks	\$) 20yrs	
	Total	500k\$(520k\$	\$)	

Operation cost→ 500k\$/[(100,000ton/day)*333day] = 0.015\$/ton

Comparison with other AOPs etc.

	E-beam	UV	Ozone	Membrane
Investment (in Total)	high	medium low	medium	high
Operating cost (unit amount)	low	medium	medium	Medium high
Quality of treated water	good	good	good	excellent
Removal of microorganism	Excellent	good	good	?
Secondary waste	no	no	Un-reacted ozone	Concentrated waste
Advantage	easy operation fast processing	easy operation easy to scale-up	good to scale-up	good for small facility
Disadvantage	X-ray shield	-periodic change of lamp -scales on lamps -slow reaction	-mixing tools for dissolution -consumption of electricity (med.)	-consumption of electricity (high) -fouling problem in membrane

For the water with low contamination level

Cost analysis of EB & other processes

Technology	Ozone	Electron Beam(EB)	Ultraviolet (UV)
Flow		100,000m ³ /day	
Capital Cost	7.4M\$	4.0M\$	2.4M\$
Annual O&M Cost	1.2 M \$	0.5M\$	1.0 M \$
Etc.			Lamp life : 1year Lamp p/u : \$550

- 1. Combined Sewer Overflow Technology Fact Sheet, Alternative Disinfection Methods [EPA 832-F-99-033] September 1999
- 2. Wastewater Technology Fact Sheet, Ultraviolet Disinfection [EPA 832-F-99-064] September 1999
- 3. 1999 Drinking Water Infrastructure Needs Survey, Modeling the Cost of Infrastructure [EPA 816-R-01-005] February 2001
- 4. EB-TECH Report[2001]

Conclusion

• A pilot plant with electron beam for treating 50m³/day of unchlorinated secondary effluent from sewage wastewater plant has constructed and operated continuously since Feb. 2002.

• Electron beam treatment of sewage effluent shows advantages in removing microorganisms as well as an economical benefit when we operate with high power accelerators.

• Electron beam wastewater treatment shows good economies in investment and operation, and are promising for future wastewater treatment processes.

Thank You for your attention TECH

Electron Beam Technology WWW.EB-TECH.COM

Municipal Wastewater Treatment Plant in Daejeon

Characteristics

Area : 413,565m² Facilities : 41units in 20,634m² Capacity : 900,000m³/day Influent : 664,000m³/day

