

Application and Economies of Electron Beam Wastewater Treatment

June 05, 2005

B. HAN, J. Kim, Y. Kim EB TECH Co. Korea

International Symposium on the Utilization of Accelerators of IAEA, Dubrovnik, Croatia

- 1. Why e-beam treatment ?
- 2. Characteristics of e-beam wastewater treatment
- 3. Review of previous works
- 4. Examples of e-beam water/wastewater treatment
- 6. Pros and Cons of e-beam wastewater treatment
- 7. Summaries

Why e-beam water/wastewater treatment ?

- **1.** Remove organic impurities with radiation chemical reaction
- 2. Remove colors by destruction of double bond
- 3. Remove odors by opening of rings in aromatic compound
- 4. Disinfection of microorganisms by destruction of DNA
- 5. Destruction of endocrine disrupter with radical reaction
- 6. E-Beam treatment can not remove T-N, T-P and Salts

Characteristics of e-beam wastewater treatment

: Water/Wastewater treatment by Radiation-Chemical reactions

Radiation (electron-beam) treatment consists in the formation of very reactive radical particles upon the water radiolysis. They are:

- hydrated electron
- hydrogen atom
- hydroxyl radical

e⁻_{aq} (reducer);

- ·H (reducer);
- ·OH (oxidizer).

$$\begin{array}{l} e^{-} \longrightarrow e^{-}_{therm} \longrightarrow e^{-}_{aq} \\ H_{2}O^{+} + H_{2}O \longrightarrow H_{3}O^{+} + OH \\ e^{-}_{aq} + H_{3}O^{+} \longrightarrow H + H_{2}O \\ H + H \longrightarrow H_{2} \\ OH + OH \longrightarrow H_{2}O_{2} \\ e^{-}_{aq} + OH \longrightarrow OH^{-} \end{array}$$
 "Spur" reactions $\leq 10^{-8}$ s

G-values of primary water radiolysis products at the end of "spur" processes (1/100 eV)

e ⁻ _{aq}	Н	ОН	0	H ₂	H ₂ O ₂	H ₃ O+	OH⁻
2.8	0.6	2.8	0.007	0.45	0.7	3.3	0.5

1 kGy = 1 kJ/kg

1kJ ≈ 6.3 X 10²¹ eV \rightarrow 1.8 X 10²⁰ OH radicals 1kg of water ≈ 56 mole \rightarrow 3.3 X 10²⁵ H₂O molecules radical concentration \rightarrow 1/10⁵

Principles of Wastewater treatment with electron beam

Application of e-beam on water/wastewater treatment

- -. Wastewater from Textile Dyeing Companies
- -. Wastewater from Papermill
- -. Leachate from Sanitary Landfill
- -. Wastewater containing Heavy metals (Cd,Hg,Pb,Cr⁺⁶)
- -. Re-use of effluent from Municipal wastewater plant
- -. Remediation of contaminated water (PCB, Explosives)
- -. Contaminated Underground water
- -. Drinking water

Review of previous works

1980	Boston, U.S.A.	Municipal Sewage
		Drinking Water
	Takasaki, Japan	Textile Wastewater
		Leachate from Landfill
	East Germany	Gamma cells for
		Well conditioning
	Voronezh, Russia	Contaminated underground water

Wastewater Treating Facility with e-beam in Boronezh

Accelerators operated in Voronezh Wastewater Facility, Russia

Nekal (IsobutyInaphthalene sulfonates)

R = (CH3)3C-, (CH3)2CHCH2- or CH3CH2CH(CH3)-

Contamination Level in Underground Water of Voronezh City, Russia

	Before	after
BOD	500-1000	7-15
COD	1600-5000	60-100

1990 Miami, U.S.A.
Leachate from Landfill
Underground Water
HVEA, U.S.A.
Underground Water
Seibersdorf, Austria
Underground Water
Angarsk, Russia
Mixed Petrochemical and
Municipal wastewater
Taegu, Korea
Textile Dyeing Wastewater
SaoPaulo, Brazil
Dyes etc.

Wastewater Treating Facility with e-beam in Miami

2000	IPC, Russia	Wastewater from Distillery,	
		Petrochemical co.	
	UNCW, U.S.A.	Underground Water	
	Seibersdorf, Austria	Underground Water	
		Effluent from municipal plant	
	EB-TECH, Korea	Textile Dyeing, Papermill,	
		Re-use of effluent	
	IPEN, Brazil	Dyes, Municipal waste	
	Portugal, Hungary, Turkey, Poland, Jordan		

Economies of e-beam water/wastewater treatment

If the e-beam process is the only and unique solution

- no restrictions on cost
- removal of toxic compound etc.

If not, severe competition with other process

- to make cost-effective, safe, reliable system
- Industrial wastewater, Re-use of effluent, Underground water, Drinking water etc.

Electron beam process can survive only when it has economical advantages over existing processes.

- -. Accelerators for Environmental Application
- -. Cost for e-beam process
- -. How to improve economical efficiency

Electron Accelerators Required for Environmental Uses

In General

- -. Firm and Stable for year-round operation (over 8,000hrs/yr)
- -. High Efficiency economical in power consumption
- -. Easy and Safe operation

Technically

- -. Uniform doses over effluent
- -. Enough scanning speed compared to the speed of effluent
- -. Stability of beam energy and power

Efficiency of E-beam Treatment

E-Beam Energy Dose delivered = $------\times f_1 \times f_2 \times f_3 \times f_1 \dots$ Amount of water (F)

- $f_1 = efficiency of E-beam Machine 0.2~0.9$
- f_2 = efficiency of transmission thru air 0.2~0.8
- f_3 = efficiency of Water delivery system 0.3~0.9
- f_i = other factors affecting the efficiency ?

Beam Power (kW)

Normally in good machine, the efficiency F≈0.6~0.7

Calculation of required power

P(kW) = M(kg/s) D(kJ/kg) / F

Where P = required power of e-beam (kW = kJ/s) M = mass productivity (kg/s = 86.4m³/day for water) D = dose delivered (kGy = kJ/kg) F = efficiency of beam energy transfer (~0.6) M(m3/d) D(kGy) = 50 P(kW)P (kW) = 0r M(m3/d) = -----

P (kW) = $\frac{11(110/3)/2(110/3)}{50}$ or M(m3/d) = $\frac{100/10(110/3)}{D(kGy)}$

Required E-beam power for fixed amount of Wastewater

Amount of Wastewater treated with fixed E-beam power

For the re-use of effluent 100,000m³/day with 0.2kGy

- Investment (I) Accelerator, $400kW(A) = 2.0 \sim 2.5 M$
 - BLDG & Tech. (B) = $1.0 \sim 1.5$ M\$
 - Others (C) = 0.5 M\$

I = A+B+C ≅ 4.0 (~4.5) M\$

- **Excluding :** Cost for Land
 - R & D Cost
 - **Cost for approval from Authorities**

Operation (O)

- Interest (In)	6%	= 240,000\$	Fixed
- Depreciation (Dp)	20yr	= 200,000\$	FIXEU
- Electricity (E)		= 320,000\$ –	
+. Accelerator (5	500kW)		
+. Pumps etc. (300kW)		
where, r = cost o	f electricity (USD	/hr) <i>r = 0.05\$</i>	Variable
T = operatio	on time (hr/yr)	T = 8000hr	v an labio
- Chemicals (Ch)			
- Labors (L) 3 op	erator (1×10 ⁵ \$)	= 100,000\$	
- Maintenance (M)	2%	= 80,000\$	
<mark>0</mark> = In + Dp	+ E + Ch + L + M	= 940,000\$	
		~ 1M\$	

For the operation of 400kW accelerator, Investment 4.0M USD **Operation** 0.5M USD/yr (1.0M USD/yr with interest & depreciation) It can treat up to $100,000m^3/day$ with 0.2kGy. about 12Cents for Construction and 1.5(3)Cents for operation for each m³/day

Even in more conservative calculation,

Operation (O)

- Interest (In)	10%	= 400,000\$
 Depreciation (Dp) 	10yr	= 400,000\$
- Electricity (E)		= 400,000\$
+. Accelerator (50	DOkW)	
+. Pumps etc. (30	00kW) + 200kW	
where, r = cost of	electricity (USD/	'hr) <i>r = 0.05\$</i>
T = operatio	on time (hr/yr)	T = 8000hr
- Chemicals (Ch)		
- Labors (L) 3 ope	erator (1×10 ⁵ \$)	= 200,000\$
- Maintenance (M)	3 %	= 120,000\$

O = In + Dp + E + Ch + L ~ ~ 1.5M

It cannot exceed 5Cents for operation for each m³/day

	ite	ms	Investment	Remark	
	Construction Accelerator		2,000k\$	400kW	
Investment		Facilities	1,000k\$	Shield room	
		Others	1,000k\$		
	Sub-total		4,000k\$		
	Area		150m ²		
	Items Annual Cost		Re	Remark	
	1. Labor	100k	\$		
	2. Electricity	320k	\$ 800kW*0.05	\$/kWh*8000hr	
Operation	3. Maintenance	80k	\$		
	4. Interest	(240ks	\$) 6%		
	5. Depreciation	(200ks	6) 20yrs		
	Total	500k\$(440k\$	\$)		

Operation cost → 500k\$/[(100,000ton/day)*333day] = 0.015\$/ton

Cost analysis of EB & other processes

Technology	Ozone	Electron Beam(EB)	Ultraviolet (UV)
Flow	100,000m ³ /day		
Capital Cost	7.4M\$	4.0M\$	2.4M\$
Annual O&M Cost	1.2M\$	0.5M\$	1.0M\$
Etc.			Lamp life : 1year Lamp p/u : \$550

- 1. Combined Sewer Overflow Technology Fact Sheet, Alternative Disinfection Methods [EPA 832-F-99-033] September 1999
- 2. Wastewater Technology Fact Sheet, Ultraviolet Disinfection [EPA 832-F-99-064] September 1999
- 3. 1999 Drinking Water Infrastructure Needs Survey, Modeling the Cost of Infrastructure [EPA 816-R-01-005] February 2001
- 4. EB-TECH Report[2001]

How to Improve Economies and Survive ?

- **1. Reduce required doses**
 - -. Find useful Additives (like Ozone etc.)
 - -. Combined with other methods
- 2. Improve efficiencies
 - -. Machine efficiency
 - -. Improve Wastewater delivery system
- 3. Reduce the cost of e-beam Facility
 - -.Use more Powerful Accelerator

Useful additives

To assist the radiation chemical reaction

- with radical enhancers, scavengers etc.
- with inexpensive, harmless additives (gluten etc.)
- with catalyst

Addition of Ozone

- To increase the number of OH radicals
- Additional effect of ozone

$$H_{2}O \xrightarrow{e^{\ominus}} \begin{cases} H_{3}O^{\oplus}; OH^{\ominus} \\ OH; e_{aqu}^{\ominus}; H \\ H_{2}; O_{2}; H_{2}O_{2} \end{cases}$$
$$O_{3} + \begin{cases} e_{aqu}^{\ominus} \\ H \\ H_{2}O_{2} \end{cases} OH$$

Radiation is absorbed by the water not by solutes ! <u>Two</u> sources for OH (water radiolysis and O_3 decomposition)

Combine with other systems

Biological system (activated sludge treatment etc.)

- Reduction in biodegradable organic impurities
- Removal of T-N, T-P
- Difficult to remove non-biodegradable substances
- Difficult to remove salts

Physico-chemical system (coagulation etc.)

- Reduction in organic/inorganic impurities
- Difficult to remove T-N, T-P

Variation of COD concentration during the experimental period

Variation of BOD concentration during the experimental period

Variation of TN during the experimental period

Improve Wastewater Delivery System

Different types of water reactor (Spray, Injection and Flow)

- -. Uniform dose distribution
- -. Less energy consumption on water delivery
- -. Mass productivity (up to 3,000m³/d with one nozzle)

Nozzle-type Injector used in Textile Dyeing Wastewater Treatment

Cost variation with the amount of effluent

Electron Accelerators Required for Environmental Uses

- Energy range 1.0 2.0 MeV for wastewater 0.6 - 1.0 MeV for gaseous waste
- Power of electron beam up to some MW
- It should consist of some hundred kW units
- Efficiency : 85 95%
- Continuously operation (over 8,000hrs/yr)
- Computer control system
- High reliability in operation (discharge protection etc.)

Electron Accelerators Required for Environmental Uses

In General

- -. Firm and Stable for year-round operation (over 8,000hrs/yr)
- -. High Efficiency economical in power consumption
- -. Easy and Safe operation

Technically

- -. Uniform doses over effluent
- -. Enough scanning speed compared to the speed of effluent
- -. Stability of beam energy and power

Thank You for your attention TECH

Electron Beam Technology WWW.EB-TECH.COM

Water/wastewater

With high contamination	Textile dyeing wastewater Leachate from Landfill area from petrochemical plant from Paper-Mill from tanning industries
Low or less contamination	from slaughterhouse & fisheries Underground water Water from lake or marshes Effluent of municipal plant

Goal of water/wastewater treatment

Industrial Wastewater

Removal of organic impurities

Municipal Wastewater

Disinfection of microorganisms Removal of Color, Odor Removal of residual organics

Underground Water

Disinfection of microorganisms Removal of harmful organics

Hydrated electron e-ag

(reduction reactions)

- Inorganic 1. All the metal Cations (exceptions :cations of alkaline and alkali-earth metals)
 - 2. Majority of Oxygen containing and other complex anions, like NO₂⁻, NO₃⁻, CrO₄²⁻, Cr₂O₇²⁻, MnO₄⁻. Fe(CN)₆³⁻, etc. (low reactivity to SO₄²⁻, ClO₄⁻, CO₃²⁻, and some others)
- *Organics* 1. Benzene ring and aromatic compounds
 - 2. Hetero-atomic double or triple bonds (carbonyl, nitro, nitril)
 - 3. Thiol, disulfide, halide, nitro functional groups in both saturated and unsaturated (including aromatic) hydrocarbons

Hydrogen atom H

(reduction reactions)

- I. Reduction reactions (one electron transfer)
 - 1. Majority of metal cations (low reactivity to Cd²⁺, Zn²⁺, some rare-earth metal cations, et al.).
 - 2. Some strong oxidizing inorganic anions, like CrO₄²⁻, Cr₂O₇²⁻, MnO₄⁻.
 - 3. Disulfide, iodo, bromo, nitro functional groups and benzene ring in organic compounds.
- II. Addition reactions to a double bond in unsaturated hydrocarbons, aromatic compounds.
- III. Reaction of H-atom abstraction from saturated carbon in any organic compounds

Hydroxyl radical OH

(oxidation reactions)

I. Oxidation reactions (one electron transfer)

- 1. Majority of inorganic cations and anions
- 2. Benzene ring in aromatic compounds.
- II. Addition reactions to a double bond in unsaturated hydrocarbons, aromatic compounds.
- III. Reactions of H-atom abstraction from saturated carbon in any organic compounds.