Mexican Nuclear Research Institute

Characterization of Materials Using Accelerators

Dr. Luis Carlos Longoria Gándara

International Symposium on the Utilization of Accelerators Dubrovnik Croatia, 2005

Mexican Nuclear Research Institute

Physics Institute UNAM

Tandem Van de Graaff 6 MV Laboratory (LAT)

Nuclear techniques at ININ

- PIXE : Proton Induced X-ray Emission
- DIXE: Deuteron Induced X-ray Emission
- PIGE: Proton Induced γ-ray Emission
- RBS: Rutherford Backscattering
- NRA: Nuclear Reaction Analysis
- NFS: Neutron Fast Spectroscopy
- ERDA: Elastic Recoil Detection Analysis
- EFA: Elastic Forward Analysis

Ion sources and Tandem Van de Graaff 6 MV (EN)

Inside view of accelerator's tank

Equipment for the accelerator

New resistors

New accelerator's tubes

Experimental room (5 lines)

Typical PIXE spectrum

Microbeam System

ININ Tandetron Accelerator

X- Ray Detection System

Airbone particles Collectors

Sources of Pollutants to the Atmosphere

NIGHT

PIXE Analysis

DRY-COLD SEASON					RAINY SEASON			
	Ν	Min	Max	Mean	Ν	Min	Max	Mean
SO ₂	49	0.0016	0.0584	1.56E-02	48	0	0.02	8.90E-03
СО	47	0.7	3.2792	1.997434	49	0.6	2.6	1.4653
NOX	51	0.0415	0.1799	0.100754	47	0.01	0.13	5.53E-02
NO ₂	51	0.0205	0.082	4.81E-02	48	0.02	0.07	3.74E-02
FPM	51	7	59	30	49	11	40	21
S	51	252	4937	1598	49	418	2376	1132
C1	46	12	1022	152				
K	51	37	1824	287	49	46	750	135
Ca	51	38	289	122	49	40	927	113
Ti	48	3.7	26	9				
Mn	47	1.6	14	5	47	0	16	6
Fe	51	64	284	133	49	41	577	132
Cu	50	2.2	74	20	49	2	135	27
Zn	51	10	285	108	49	28	484	140
Pb	48	22	196	68	47	18	126	54
Number of appearances (N), minimum and maximum values detectd (min/max) in ng/m3 and mean value.								

Mean Source Contribution to each Variable for the Dry-Cold Season

Variable	Automotive	Road Dust	Sulphates	Small Industry
SO ₂	35.04	0.00	64.96	0.00
CO	89.89	0.00	0.00	10.11
NO _x	73.68	8.62	4.93	12.77
NO ₂	67.65	12.13	10.44	9.78
FPM	44.88	24.45	30.68	0.00
S	15.81	15.90	68.29	0.00
C1	0.00	109.85	55.00	-64.86
K	127.16	30.79	0.00	-57.95
Ca	59.84	30.63	9.54	0.00
Ti	60.67	39.33	0.00	0.00
Mn	22,21	62.17	0.00	15.62
Fe	53.15	35.94	3.49	7.41
Cu	0.00	0.00	0.00	100.0
Zn	0.00	47.78	12.38	39.84
Pb	7.31	31.72	19.78	41.19

Elemental concentration for particles PM2.5

Archaeological Objects Under Study

Sample	Weight(g)	Height, wide, thickness (cm).	
Ax	800	18, 8.5, 1.0	
Coiled wire	0.3	1.0, 2.5, 0.01	
Belt (3 CH)	0.6	6.0, 0.04, 0.09	
Belt (3 G)	7.4	4.0, 2.0, 0.05	
Belt (4)	1.4	2.5, 1.0, 0.03	
Anthropomorphic figure	6.5	3.0, 8.5, 4.0	
Metal ring or copper band	11.6	,, 4.0, diameter 4.6	
Flat Disk	1.6	,, 0.01, diameter 2.2	
Pliers Fragments (5 G)	6.3	,,	
Pliers Fragments (5 CH)	5.6	,,	
Punch with 2 extremes(U12)	6.5	7.3,, 0.04	
Punch with 2 extremes(U13)	7.5	7.0,, 0.05	
Needle (U14)	4.7	12.0, 0.04,0.02	

Metallic Surface

Typical X-ray spectrum obtained with a 2.6 proton bombardment of a metallic object.

Conclusions

- The Research Accelerators in Mexico are used mainly for elemental determination of different type of materials.
- PIXE is the most used technique and it is has proved to be a very suitable technique for elemental analysis of archaeological and environmental samples