IAEA Workshop, Vienna, July 2005

The Role of DEMO in a Fast-Track Development of Fusion Power

Ian Cook, Neill Taylor, David Ward Euratom/UKAEA Fusion Association

This work was funded by the UK EPSRC and Euratom

Background

- Fast track development of fusion is now widely accepted in general terms.
- Very useful for prioritising R & D.
- Needs to be developed in more detail: this paper focusses on DEMO.
- PPCS Models, and variants, used as the targets.

Essence of the fast track

First stage

- ITER.
- Materials on the <u>same</u> time scale.

Second stage

- **DEMO.** (Final integration and reliability development.) Realistically, there may be several DEMOs, roughly in parallel.
- Leading directly to commercial power.

Our approach (1)

- Motives, opportunities and targets (from power plant and economic studies).
- Issues, and their resolution by devices.
- Prioritisation and focus to speed the programme.
- Risks and benefits.

Our approach (2)

- There has to be a change of culture, to a disciplined project-oriented "industrial" approach to fusion development.
- Compare fusion with the way that fission and flight were developed! There were the equivalents of many DEMOs and many materials test facilities.

PPCS Models

PPCS Model	Plasma physics	Structural material	Other blanket materials	Other divertor materials	
Α	Near-term	Eurofer	LiPb/water	W/Cu/water	
В	Near-term	Eurofer	Li4SiO4/Be/He	W/He	
С	Intermediate	Eurofer/ODS	LiPb/SiC/He	W/He	
D	Advanced	SiC/SiC	LiPb	W/SiC/LiPb	

PPCS Models

Cost of electricity

Model	Cost of electricity (Eurocents/kWh)
Α	5-9
В	5-9
С	4 – 7
D	3 - 5
AB	5 - 9
C *	4.5 - 8.5
B*	(Marginally worse than B)

Model B

- Re-assessment of pumping power has degraded economics.
- But re-optimisation is expected to recover some of this, to a position intermediate between A and B.

Model AB

- Lithium-lead, but with helium cooling.
- Economics similar to Model A, because:
- Higher blanket temperature, but
- Higher pumping power and lower divertor load.

Model C*

- Model C technology, but Model B (nearterm) plasma physics.
- Economics similar to Model B, because:
- Higher blanket temperature and lower pumping power, but
- Lower power amplification and thicker neutron shield.

Model B*

- Similar to Model B, but with:
- Tungsten carbide shield.
- To decisively remove hydrogen generation in hypothetical accidents.
- Neutronics analysis shows inboard shield <u>may</u> need to be slightly thicker.
- Economics <u>may</u> be slightly worse than Model B.

First generation targets

- A, AB, B* and C* (or similar) are all attractive candidates.
- Excellent safety and environment.
- Acceptably competitive economics.

Technical targets: (1) from safety and environmental requirements

• The main target is to further optimise, and test in IFMIF, reduced activation ferriticmartensitic steel, and/or an oxide-dispersionstrengthened variety.

• Tritium inventory control

Technical targets: (2) from economic requirements

The variation of direct cost of electricity with the main parameters is well fitted by:

$$\cos \propto \left(\frac{1}{A}\right)^{0.6} \frac{1}{\eta_{th}^{0.5}} \frac{1}{P_e^{0.4} \beta_N^{0.4} N^{0.3}}$$

where, in descending order of relative importance to economics:

- A is the plant availability, which primarily depends upon the lifetime of the blankets and divertors, before they need to be replaced, and the reliability of all the systems, especially the in-vessel components;
- η_{th} is the thermodynamic efficiency, which primarily depends upon the operating temperature and energy multiplication of the blankets;
- P_e the net electrical output of the plant, which can be chosen;
- β_N is the normalised plasma pressure;
- N is the ratio of the plasma density to the Greenwald density.

It may be seen that there are **no** "show-stopping" target minimum values associated with any of these parameters, but they are all potential degraders of economic performance.

Issues and their resolution

Issue	Today's expts.	ITER	IFMIF	DEMO* Phase 1	DEMO* Phase 2	Power Plant
disruption avoidance	2	3		С	R	R
steady-state operation	1	3		3	r	r
divertor performance	2	3		R	R	R
burning plasma Q>10		3		R	R	R
power plant plasma performance	1	3		С	R	R
T self-sufficiency		1		3	R	R
materials characterisation			3	R	R	R
plasma-facing surface lifetime	1	2		2	3	R
FW/blanket/divertor materials lifetime		1	2	2	3	R
FW/blanket components lifetime		1	1	1	3	R
NB/RF heating systems performance	1	3		R	R	R
electricity generation at high availability				1	3	R
superconducting machine	2	3		R	R	R
tritium issues	1	3		R	R	R
remote handling	2	3		R	R	R

* Risks would be reduced and options expanded by operating several alternative DEMO plants in parallel

Risks and Benefits

The main risks are risks of:

- delays, or, if the delay is unacceptable
- having to back off to some extent from the economic performance of the first generation of power plants.
- Even when discounted for both time delay and probability, the cost of the fusion development programme is much less than the expected benefit.

Value of fusion development

Key assumptions

First stage

- ITER
- Acceleration of IFMIF design and construction (as EFDA study)
- **Prioritisation of ITER & IFMIF programmes,** in favour of DEMO relevance

Second stage

• Ex-vessel reliability developed in extended ITER and parallel programme

Reference fast track

Fast track role of DEMO

- Based on ITER-developed physics, but the size of a power plant
- Based on Eurofer or similar
- Based on Models A, AB, B* or C* (or similar)
- First phase similar to power plant EXCEPT reliability and conservative design.
- Second phase builds up reliability.

Key fast track needs for DEMO

- Strong top-down prioritisation of ITER physics, ITER TBMs and IFMIF, focussing on near-term, not advanced or peak performance.
- Should DEMO (and power plant) be smaller than PPCS? This would reduce extrapolations, but add 20% to the cost of electricity.
- How to test helium-cooled divertors, for irradiationinduced creep and swelling?
- Several DEMOs are likely widening and optimising choices. Need to produce tritium in dedicated reactors?

Some implications for TBMs

- There must be a water-cooled lithium-lead TBM. Model A is completely acceptable, is the nearest term Model, and the only one with a divertor based on ITER's.
- This should be the centrepiece of the TBM programme.
- As there is only room for 6 TBMs, there should be no advanced TBMs.

Concluding remarks

- Models A, AB, B* or C* are good candidates for attractive fast track DEMOs and first generation power plants.
- The entire cost of the fusion development programme is equal to only a week of spending in the international energy markets.