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Abstract

This paper reports that: (1) global gyrokinetic particle simulations of electrostatic ion
temperature gradient turbulence show that the fluctuation scale length is microscopic and
independent of device size, while the transport coefficient exhibits a gradual transition from
a Bohm-like scaling for device sizes corresponding to present-day tokamak experiments to
a gyro-Bohm scaling for future larger devices; (2) a nonlinear model for turbulence radial
spreading based on the modified porous-medium equation offers a phenomenological un-
derstanding of the transition from Bohm to gyro-Bohm scaling; (3) quantitative agreement
is obtained between global and local simulations in the gyro-Bohm regime; and (4) we
estimate the role of the trapped electron nonlinearity in zonal flow generation in trapped
electron mode turbulence in the context of parametric instability theory.

1 Introduction

An accurate prediction of the expected transport level is critical for the design of fusion reactors
since the balance between turbulent transport and heating power determines the performance
of magnetic fusion plasmas. At present, the reactor design studies [1] rely on extrapolations of
turbulent transport properties from present-day tokamak experiments to larger devices. These
estimates are based in large part on some forms of empirical scaling, particularly device size
scaling, for the global energy confinement time. These empirical scaling estimates are not
always compatible with theoretical constraints from transformation invariants of fundamental
plasma equations [2]. In this work, transport scaling with respect to device size is critically
examined using first-principles gyrokinetic particle simulations for electrostatic toroidal ion
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temperature gradient (ITG) turbulence [3], which is a leading candidate to account for anoma-
lous ion thermal transport in the tokamak core region. These large scale nonlinear simulations
have recently been enabled by advances in efficient algorithms and by effective utilization of
tera-scale massively parallel computers. Our simulation results show that extrapolations based
on empirical scalings or mixing length rules can be unreliable and that full device nonlinear
simulations can play a key role in complementing and then eventually replacing extrapolation
methods by directly addressing parameter regimes inaccessible through conventional analytic
or experimental approaches.

In the absence of a fundamental, first-principles turbulence theory, heuristic, mixing length
rules are often utilized to estimate size scaling of turbulent transport [3]. This approach invokes
a random walk type of picture for diffusive processes using the scale length of turbulent eddies
as the step size and the linear growth time of the instability as the step time. It predicts that
if the eddy size increases with device size, the transport scaling is Bohm-like, i.e., local ion
heat diffusivity is proportional toχB = cT/eB. Herec, T, e, B are, respectively, speed of
light, electron temperature, electric charge of electrons, and magnetic field amplitude. On the
other hand, if the eddy size is microscopic (on the order of the ion gyroradius), the transport
scaling is gyro-Bohm, i.e., local ion heat diffusivity is proportional toχGB = ρ∗χB. Here,
ρ∗ = ρi/a is the ion gyroradiusρi normalized by the tokamak minor radiusa. If transport is
not diffusive (e.g., large transport events dominate the contribution to energy fluxes) the scaling
can also be Bohm-like. Most theories [3] and local (or flux-tube) direct simulations [4] of ITG
turbulence predict a gyro-Bohm scaling for ion transport since they assume fluctuations on a
microscopic scale length and ignore pressure gradient profile variations. The gyroBohm scaling
is often the implied scaling in reactor designs [1], and is clearly beneficial for larger devices
since it predicts that transport coefficient decreases when the device size increases. However,
trends from experimental observations have been more complicated. Transport scalings in low
confinement regimes (L-mode) have always been observed to be Bohm or worse than Bohm in
major tokamaks [5, 6]. In particular, dimensionless scaling studies on the DIII-D tokamak found
that ion transport and energy confinement time exhibit Bohm-like behavior, while fluctuation
characteristics suggest a gyro-Bohm scaling [7] for transport. In the high confinement regime
(H-mode), transport scalings have been reported to be either Bohm [8] or gyroBohm in limited
operational parameter space [6]. The uncertainty reflects the difficulty in varyingρ∗ while
keeping all other dimensionless parameters fixed (e.g., toroidal Mach number in H-mode).

An effective tool for scaling studies is full torus gyrokinetic particle simulations [9]. In
these large scale calculations, kinetic effects and global profile variations are treated rigorously,
andρ∗ can be varied for a wide range while all other dimensionless parameters are fixed. In
previous global gyrokinetic simulations of electrostatic ITG turbulence, Bohm-like transport
scaling was observed due to radially elongated eddies associated with the global structure of
linear toroidal eigenmodes [10]. However, those scaling studies did not properly deal with
turbulence-driven zonal flows. Our more realistic simulations in which zonal flows are self-
consistently included found that the global mode structure is destroyed by the random shearing
action of the zonal flows. This results predominantly in the reduction of the radial correlation
length and subsequently the turbulence level [11]. This finding that the shearing of zonal flows is
the dominant saturation mechanism represents a new nonlinear paradigm that is fundamentally
different from that of the Hasegawa-Mima system [12], which has been popular because of its
simplicity as a nonlinear paradigm for understanding drift wave turbulence. This motivated us
to carefully studyρ∗ scaling with self-generated zonal flows using large-scale simulations with
device-size scans.
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2 Size Scaling of Turbulent Transport

This study employs a well benchmarked, massively parallel full torus gyrokinetic toroidal
code (GTC) [11] and uses representative parameters of DIII-D tokamakH-mode core plasmas
which have a peak ion temperature gradient atr = 0.5a with the following local parameters:
R0/LT = 6.9, R0/Ln = 2.2, q = 1.4, ŝ ≡ (r/q)(dq/dr) = 0.78, Te/Ti = 1, ε ≡ r/R0 = 0.18.
HereR0 is the major radius,r is the minor radius,LT andLn are the temperature and den-
sity gradient scale lengths, respectively,Ti andTe are the ion and electron temperatures, and
q is the safety factor. These parameters [13] give rise to a strong ITG instability with a linear
threshold of(R0/LT )crit = 4.0. These global simulations used fixed boundary conditions with
electrostatic potentialδφ = 0 enforced atr < 0.1a andr > 0.9a. The size of the tokamak is
varied up toa = 1000ρi with ρi measured atr = 0.5a and other key dimensionless parameters
fixed. The simplified physics model includes: a parabolicq profile, a pressure gradient profile of
exp{−[(r− 0.5a)/0.3a]6}, a circular cross section, no impurities, and electrostatic fluctuations
with an adiabatic electron response. Externally driven plasma flows and collisions [14] are not
treated in these simulations. In the full torus nonlinear simulation ofa = 1000ρi, we calculated
7000 orbital time steps of one billion particles (guiding centers), and interactions of these par-
ticles with self-consistent electrostatic potential represented on 125 million spatial grid points
to address realistic reactor-grade plasma parameters covering disparate spatial and temporal
scales. These large scale simulations only became feasible recently with the implementation of
an efficient global field-aligned mesh using magnetic coordinates, which reduces computational
requirements by two orders of magnitude, and with the access to a multi-teraflop massively par-
allel computer, the fastest civilian computer in the world at the time of this study [15].

Each of these simulations starts with very small random fluctuations which grow expo-
nentially due to the ITG instability. Zonal flows are then generated through the modulational
instability [16, 17] and saturate the toroidal ITG eigenmodes through random shearing [18].
Finally, the nonlinear coupling of ITG-zonal flows leads to fully developed turbulence with a
steady state transport level that is insensitive to initial conditions. The fluctuations in the steady
state are nearly isotropic in the radial and poloidal directions. In contrast, when zonal flows are
suppressed in the simulation, the radial spectra are narrower (dominated by lowkr components)
for larger device sizes [19].

First, we quantify the fluctuation scale
length. Radial correlation functions for the
fieldline-averaged fluctuation quantities (den-
sity perturbations, etc.) are calculated using
r = 0.5a as a reference position, and averaged
in the toroidal direction because of axisymme-
try and over a few eddy turnover times, assum-
ing statistically steady state. The correlation
functions for density perturbations (or electro-
static potential excluding the zonal flow com-
ponent) are found to be self-similar for differ-
ent tokamak sizes (Fig. 1), and suggest a turbu-
lent eddy size of∼ 7ρi which is independent
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Figure 1: Radial correlation functions for density per-
turbations.

of device size. The correlation functions for temperature perturbations are very similar to those
of the density perturbations, and the correlation functions for heat flux show a correlation length
about half of those for density and temperature perturbations. All these correlation functions
decay exponentially and no significant tails at large radial separations exist. We conclude that
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the fluctuation scale length is microscopic, i.e., on the order of ion gyroradius and independent
of device size.

Next we examine whether transport is diffusive using the probability distribution function
for the radial diffusion of test particles (passive particles that do not affect the turbulence). Af-
ter nonlinear saturation, 6 million test particles are initiated aroundr = 0.5a with a uniform
poloidal distribution. The probability distribution function of radial displacement after a few
eddy turnover times is found to be very close to a Gaussian. Further examination of the de-
viation from the Gaussian reveals no singular structure in either pitch angle or energy space.
This indicates that there is no sharp resonance in the wave-particle interactions. Since the radial
motion of test particles is diffusive rather than ballistic, the wave does not trap or convect the
particles, but only scatters the particle orbits. We can calculate ion heat conductivity based on
the random walk model of test particle heat flux,Q, due to the energy-dependent diffusivity
D = σ2/2τ , Q = − ∫ 1

2
v2D∂f/∂rd3v, whereσ is the standard deviation for radial displace-

ment at timeτ after the initiation of test particles. We also measure the self-consistent heat flux,
Q =

∫ 1
2
v2δvE×Bδfd3v, wherev is particle velocity,δf is the perturbed distribution function,

andδvE×B is the radial component of gyrophase-averagedE × B drift. We found that the test
particle heat flux is very close to the self-consistent heat flux. This suggests that wave transport,
where the wave extracts energy from ions in the hot region and deposits it back to ions in the
cold region, does not play a significant role. Furthermore, the probability distribution functions
for the electrostatic potential, temperature fluctuations, and heat fluxes all decay exponentially
with no significant tails at large amplitudes. This is observed for large devices where the trans-
port scaling is gyroBohm, and where there are a large number of data samplings for adequate
statistics. We conclude that the heat flux is carried by the radial diffusion of particles, and that
large transport events, where heat pulses propagate ballistically, are apparently absent over this
simulation time.

Now that the fluctuation scale length is
found to be microscopic and test particle trans-
port to be diffusive, we might expect the trans-
port scaling to be gyroBohm. Surprisingly,
local ion heat conductivity (Fig. 2) measured
at r = 0.5a in this scan exhibits Bohm-like
scaling for plasmas corresponding to present-
day tokamak experiments (a < 400ρi), even
though the turbulence eddy size is indepen-
dent of device size. This result is consis-
tent with recent dimensionless scaling studies
on the DIII-D tokamak, which found that ion
transport and energy confinement time exhibit
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Figure 2: Ion heat conductivity vs. minor radius.

Bohm-like behavior while fluctuation characteristics suggest a gyro-Bohm scaling [7]. As we
increase the device size further (up toa = 1000ρi), there is a gradual transition from Bohm-like
scaling to gyroBohm scaling. Interestingly, recent transport studies of the JET tokamak [8] and
a scan of power thresholds for the formation of internal transport barriers [20] show a similar
trend. These findings show that extrapolations from present-day experiments to larger devices
based on empirical scalings or mixing length rules can be unreliable.

Possible mechanisms for the transition from Bohm scaling to gyroBohm scaling need to
be identified. The device size where the transition occurs in the present studies is much larger
than that expected from the linear ITG theory of pressure gradient profile variations. It is well
known that strong profile variations in a small device can reduce the linear growth rate of the
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ITG mode [3]. However, the results shown in Fig. 3 indicate that this effect is only important
for a < 100ρi. The linear growth rates are found to become independent of device size when
a > 100ρi for both the most unstable linear mode (kθρi ∼ 0.45) and the dominant nonlinear
mode (kθρi ∼ 0.22). Therefore, the transition from Bohm to gyroBohm should be governed by
nonlinear processes.

Previous two-dimensional fluid simula-
tions of toroidal ITG modes have found that
Bohm-like transport can be driven when the
diamagnetic flow shear is a significant frac-
tion of the linear growth rate near the ITG
threshold [21], and that the scaling is al-
ways gyroBohm far away from marginality.
However, zonal flows are not properly treated
in that study. In the present simulations
with zonal flows included, we have scanned
the pressure gradient down toward the linear
threshold, and found that turbulence is com-
pletely suppressed by zonal flows [13] before
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Figure 3: Linear growth rate vs. device size.

the shear of diamagnetic rotation becomes a significant fraction of the linear growth rate. In
the simulation results shown in Fig. 2, the plasma is far away from linear marginality. In
fact, the linear growth ratesγ are comparable to mode real frequenciesωr (γ ∼ ωr/2 for
kθρi = 0.45, andγ ∼ ωr/3 for kθρi = 0.22). Profile relaxation has been observed in full torus
simulations [22], which can drive the system toward marginality. To prevent this unrealistic
relaxation, we use an effective collision operator for energy diffusion to model a heat bath:
δfc = f0[(v/vTi)

2 − 3/2]δT/Ti, whereδT is ion temperature perturbation averaged over the
flux-surface and over a minor radius range of a few eddy sizes. The effective collision time of
this operator is on the order of an ion energy confinement time, which is much longer than the
turbulence decorrelation time. Ion temperatures are restored to their initial value using this heat
source/sink. Thus pressure profiles are kept fixed throughout the simulations. Therefore, the
Bohm-like scaling for small device size produced in our simulations is not due to marginality
or profile relaxation.

It is found that the fluctuation amplitude (excluding zonal flows) scales asδvE×B ∝ vdia/
√

ρ∗
in the Bohm regime for small devices, andδvE×B ∝ vdia in the gyroBohm regime for larger
devices, wherevdia = viρi/R0. This δvE×B scaling, together with the fact that test particle
transport is diffusive, indicates that the effect of sharp profile variations of the pressure gradient
in a relatively small size plasma reduces the fluctuation amplitude through nonlinear processes
and leads to Bohm-like transport. A plausible mechanism for this effect is the radial pene-
tration of fluctuations from the unstable region to the linearly stable region [22, 21]. Indeed,
it is observed that in the nonlinearly saturated phase, fluctuations spread radially toward both
directions (edge and axis) for a region on the order of25ρi independent of the device size. If
we assume that total fluctuation energy content is not affected by this radial expansion, then
the fluctuation intensity scales as(δφ)2 ' δφGB/(1 + 50ρ∗)2, whereδφGB ' ρ∗Te/e is the
gyroBohm scaling forρ∗ → 0. Sinceχi ∝ |δφ|2 has previously been observed [14], the heat
conductivity should then scale asχi ' χGB/(1 + 50ρ∗)2. Interestingly, this heuristic scaling
formula fits well the simulation results.
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3 Turbulence Spreading and Transport Scaling

Our recent global gyrokinetic simulations[23] of ITG turbulence described in the previous sec-
tion show that the turbulence intensity propagates in space, to regions where the ITG modes are
linearly stable. This constitutes a type of non-local transport phenomenon. Here, we present
a simple one dimensional nonlinear model of turbulence propagation[24] which is similar to
previous models of transport barrier propagation[25] and ground water spreading in porous
rock[26].

∂

∂t
I = γ(x)I − αI2 + χ0

∂

∂x
(I

∂

∂x
I). (1)

HereI is the dimensionless turbulence intensity,x is a radial coordinate, andγ(x) is the “local”
growth rate of the ITG mode which depends on the local gradient in ion temperature. We
takeγ(x) to be monotonically decreasing inx, i.e., γ(x) > 0 for x < x0 andγ(x) < 0 for
x > x0. The α term represents a local nonlinear coupling which is responsible for a local
nonlinear saturation of turbulence.χ0I is a turbulent diffusivity with an explicit proportionality
to I as observed in the previous gyrokinetic simulation[14]. In the absence of the last term,
Eq. (1) yields a nonlinear saturation levelI(x) = γ(x)/α which is non-zero only in the region
γ(x) > 0. Now we study the role of the last term, describing the radial diffusion of turbulence
in fluctuation propagation. Since we are primarily interested in the region whereγ(x) ' 0 and
I is consequently small, it is instructive to look at the behavior of a solution of the following
nonlinear equation,

∂

∂t
I0 = χ0

∂

∂x
(I0

∂

∂x
I0) (2)

With an initial profile

I0(x, 0) =
4Q

x0
(1− x2

x2
0

)H(x0 − x),

which can be matched to a local saturation levelγ(x)/α for an appropriate choice of parameters,
Eq. (2) has the following exact solution:

I0(x, t) =
4Q

(24Qχ0t + x3
0)

1/3
(1− x2

(24Qχ0t + x3
0)

2/3
)H((24Qχ0t + x3

0)
1/3 − x), (3)

whereH is an Heaviside function.
In the absence of linear or nonlinear damping (the first and second terms on the RHS of

Eq. (1)), the front atx = (24Qχ0t + x3
0)

1/3 will propagate beyondx0 indefinitely. We expect
that this front propagation would be stopped or significantly reduced when the increase ofI for
x > x0 due to nonlinear diffusion is balanced by an ever-increasing linear damping ofI asx
increases. By taking

∂

∂t

∫ x0+∆

x0

dxI(x, T ) = −
∫ x0+∆

x0

dxγ(x, T )I0(x, T ),

we obtain a relation between the front location at saturation and the timeT for the front
saturation to take place. Forx0 >> ∆, (24Qχ0T )

1/3, we get∆2 ' 16χ0/(γ
′
x2

0), where
γ(x0 + ∆) ' γ

′
∆ has been used. Using the values ofχ0, γ

′
andx0 ' 3/8 from our nonlinear

ITG simulation, we obtain∆ ' 14ρi which is in the rough range of fluctuation broadening
observed in our simulation,∆ ' 25ρi.
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4 Global vs. Local Comparisons

Our global simulations in Section 2 used
a toroidal geometry including finite aspect ra-
tio effects [23], while local simulations in the
Cyclone benchmark [13] ignored finite aspect
ratio effects. In this Section, we simplify our
geometry to remove finite aspect ratio effects
in order to compare with the local simulations.
We found that the linear growth rate for the
most unstable mode in our global GTC sim-
ulations witha = 250ρi is identical (Fig. 4)
to that obtained in a Cyclone flux-tube simula-
tion of Dimits et al [13]. Similar agreement
was also obtained for comparisons of linear
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Figure 4: Linear growth-rate comparisons.

mode frequencies.
We scanned the device size up to the Gyro-

Bohm regime in our nonlinear global simula-
tions and compared the ion heat conductivities to
the results of flux-tube simulations, Fig 5. The
global simulation results for large device size
is shown to be close to those of local simula-
tions [13]. Note that there are some differences
between global and local simulations in term of
geometry. Local parameters such asq, s, ε are
constant in local simulations, but are functions
of minor radius in global simulations. The radial
box size in the local simulation is128ρi, which
is much smaller than that in global simulations.
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Figure 5: Time history of ion heat conductivity.

Local simulations use periodic boundary condition in the radial direction, while global sim-
ulations use a fixed radial boundary condition. Considering these differences in equilibrium
geometry, the agreement between global and local nonlinear simulations appears to be accept-
able.

Using an energy source/sink as discussed in
Section 2, we can extend the simulation time to
hundreds of turbulence decorrelation times. Quasi-
steady state ion heat conductivity, turbulence fluc-
tuation energy, and zonal flow energy are plotted
in Fig. 5 and Fig. 6, respectively. Such long simu-
lation times provide reliable statistics for temporal
correlation analysis. However, it should be pointed
out that the energy source/sink, as any model used
in the turbulence simulation community, is not
from first-principles. Quantitative differences re-
sult from using various models, although the qual-
itative trend is preserved. No numerical instability

time (L  /v )T itime (L  /v )T i

energy 

zonal flows

turbulence
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Figure 6: Time history of turbulence energy and
zonal flow energy fora = 500ρi.

is observed during the long simulation time.
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5 Role of Trapped Electron Nonlinearity in Zonal Flow Growth
in TEM Turbulence

While significant progress has been made in understanding the interaction of zonal flows and
ITG turbulence, there has been little advance in understanding the zonal flow behavior in trapped
electron mode (TEM) turbulence. For pure ITG turbulence where the electron response is adia-
batic, the modulation of ion polarization density leads to zonal flow growth[16, 17]. While it has
been stated that the expected trapped electron nonlinearity for TEM turbulence would be sub-
dominant to the ion nonlinearity by an order of

√
ε in the context of the Wave Kinetic approach,

a cancellation between the radial modulation in trapped electron density and the modulation
in ion gyrocenter density has been proposed as a possible reason for dominance of streamers
(with relatively weak zonal flows) in TEM turbulence from a preliminary flux-tube gyrokinetic
simulation[27].

Here, we estimate the role of the trapped electron nonlinearity in zonal flow generation quan-
titatively in the context of a four wave parametric instability theory in toroidal geometry[17].
We follow the usual weak turbulence expansion for fluctuations with a single non-zero toroidal
mode numbern involving the pump TEMφ0, the side band TEM’sφ+ andφ−, and the zonal
flow modeφZ. The Hasegawa-Mima type nonlinear coupling ofφ0 andφ+,− is balanced by
the neoclassically enhanced polarization shielding of the zonal flow potentialφZ as described
in Eq. (3) of the Ref.[17]. Because the trapped electron banana width is much smaller than
the trapped ion banana width, andνeeρe/(νiiρi) '

√
(me/Mi), the shielding ofφZ on the left

hand side of Eq. (3) is not changed; therefore the presence of trapped electrons can modify
the balance of the nonlinear polarization current and the neoclassical polarization current only
through modification of the linear susceptibilityαi of the pump TEM in that equation.

On the other hand, the nonlinear excitation of the linearly damped side bandsφ+,− through
E × B nonlinear coupling betweenφ0 andφZ is described by the quasi-neutrality condition
for the density responses obtained from the nonlinear ion gyrokinetic equation (Eq. (4) of
Ref. [17]) and the trapped electron nonlinear bounce kinetic equation. We find that the trapped
electrons merely reduce theE×B nonlinearity (which has no explicit mass dependence), which
produces side band fluctuations via the zonal flow modulation, by a factor of

√
8ε/π, i.e., the

surface averaged fraction of trapped electron population (The right hand side of Eq. (4) in
Ref.[17] should be multiplied by(1−√8ε/π).

Therefore we conclude that:

1. a partial cancellation between the radial modulation in trapped electron density and the
modulation in ion gyrocenter density is not likely to reduce the zonal flow growth rate in
TEM turbulence significantly, and

2. most of the zonal flow growth rate change due to trapped electrons may occur via changes
in linear properties such as the side band damping rate and the linear susceptibility (dis-
persion relation) of the pump TEM.

This work is supported by US DOE Contract No. DE-AC02-76CH03073 (PPPL), grand
number DE-FG03-94ER54271 (UC Irvine), Grant number 88ER53275 (UCSD), and in part by
the DOE SciDAC plasma microturbulence project.
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