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Abstract. Energetic Particle Modes [1] (EPM) arestrongly driven oscillationsexcited via wave-particle resonant

interactions at the characteristic frequencies of the energetic ions [1, 2],ωtE, ωBE and/orωdE , i.e., respectively

the transit frequency for circulating particles and the bounce and precessional drift frequencies for trapped ions. A

sharp transition in the plasma stability at the critical EPM excitation threshold has been observed bynonperturba-

tive gyrokinetic codes in terms of changes in normalized growth rate (γ/ωA, with ωA = vA/qR0), real frequency

(ωr/ωA) and parallel wave vector (k‖qR0) both asα = −R0q
2β′ [3, 4] of the thermal plasma and that,αE [3, 5, 6],

of fast ions are varied. The present work further explores theoretical aspects of EPM excitations by spatially local-

ized particle sources, possibly associated with frequency chirping, which canradially trap the EPM in the region

where the free energy source is strongest. Results of anonperturbative3D Hybrid MHD Gyrokinetic code [5]

are also presented to emphasize that nonlinear behaviors of EPM’s are different from those of Toroidal Alfv´en

Eigenmodes (TAE) [7] and Kinetic TAE (KTAE) [8] and that particle losses and mode saturation are consistent

with themode-particle pumpingmodel [9] (particle radial convection). Results of theoretical analyses of nonlin-

ear EPM dynamics are also presented and the possible overlap with more general nonlinear dynamics problems is

discussed.

1. EPM Excited by Ion Cyclotron Radio Frequency (ICRF) Heating.

A one-dimensional fast particle simulation code (FAPS-1D) has been developed to study the
trapped energetic particle effects on the short wavelength (high toroidal mode numbern) Alfv é-
nic modes in the tokamak configuration. The code employs the gyrokinetic (GKE) - magne-
tohydrodynamic (MHD) hybrid simulation scheme. Thus, the core plasma is described by the
MHD fluid equations, while the energetic particle species are described by the linearized GKE
equations. This allows us to study in detail the kinetic effects of the energetic particles, such
as wave-particle resonance and finite orbit size effects. The MHD fluid (or vorticity) equation
is solved via a predictor - corrector algorithm. The GKE equation for the energetic particles is
solved by aδf particle-in-cell simulation method. Specially, simulations are performed to study
the interactions between the Alfv´en modes and the trapped energetic ions produced by the ICRF
heating [3].

It is found that for the trapped energetic ions the wave-particle resonances are mainly due to the
precessional drift resonance, as indicated by the fact that the real part of the mode frequency
Ωr = ωr/ωA increases withkθρA, ρA = vA/ωcE , for smallkθρA. This is further confirmed by
examining the phase diagram of the averaged nonadiabatic distribution function,

∑
gi, which

shows that there are two resonances (180-degree-phase shift): one peaks at a lower resonance
energy (normalized to the effective ICRF tail ion thermal energy)E l

rs ≈ 0.75 and the other has
a higher value,Eh

rs ≈ 3. It can be demonstrated that the lower one corresponds to the bounce
resonance, while the higher one to the precessional drift resonance.

Both the TAEs and energetic particle modes (EPMs) are found to be excited by the trapped en-
ergetic particles. Transitions between various modes are observed in the simulations, as shown
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FIG. 1. : Growth rate (dashed curve) and real frequency (solid curve) vsα. Cases withε 0 = 0 and
ε0 = 0.25 are denoted, respectively, by “o” and “ +”.

in FIG. 1. Whenα (the normalized beta value) is low,Ωr is located in the gap and TAE domi-
nates. Asα increases,Ωr shifts downward into the lower continuum and the mode transforms
into an EPM. Whenα is increased further, the ballooning instability limit is reached.Ωr then
approaches to zero and the growth rate increases appreciably. To further demonstrate the effect
of the continuum damping, we have also plotted in FIG. 1 the case withε0 ≡ 2(r/R0 +∆′) = 0,
i.e., with the TAE frequency gap being intentionally turned off. Note thatΩr for bothε0 = 0 and
ε0 = 0.25 (finite TAE frequency gap) are approximately the same; whileγ = IIm(ω/ωA) of the
ε0 = 0 case is much more reduced than that of theε0 = 0.25 case. Note that, forε0 = 0, there
is no TAE gap and, hence, the continuum damping is always finite; in contrast to theε0 = 0.25
case whereΩr resides inside the gap and there is negligible continuum damping.

Sharp transitions in the plasma stability at the critical EPM excitation threshold, similar to
those discussed here, have been observed bynonperturbativegyrokinetic codes in terms of
changes in normalized growth rate (γ/ωA), real frequency (ωr/ωA) and parallel wave vector
(k‖qR0) both asα [3, 4] andαE [3, 5, 6] are varied. These strong dependencies of both EPM
frequency and growth rate on thermal plasma as well as energetic particle pressure profiles
are in good agreement with the experimental observations of Beta induced Alfv´en Eigenmodes
(BAE) [10] and also suggest another explanation [3] for the existence offrequency chirping
modes observed in most large tokamaks. In a recent work [11], theoretical aspects of EPM
excitations by spatially localized particle sources, possibly associated with frequency chirping,
were further explored. There, it was demonstrated that, when the characteristic scale length of
the fast particle pressure profile becomes shorter than the typical separation between rational
surfaces, the steep gradient canradially trap the EPM in the region where the free energy
source is strongest, at the same time minimizing continuum damping [11]. This result yields a
particularly low threshold for EPM excitation in low magnetic shear regions.

2. Modulational Instability of EPM

Results of anonperturbative3D Hybrid MHD Gyrokinetic code [5] are presented in this Sec-
tion in order to emphasize that nonlinear behaviors of EPMs are different from those of TAE
and KTAE. In particular, we confirm previous findings that strong radial redistributions in the
energetic particle source take place when the EPM excitation threshold is exceeded, yielding



potentially large particle losses and, eventually, mode saturation. Such a threshold may occur
at experimentally accessible values ofβE, e.g., as low asβE0 = 0.75% (on axis value) for
n = 8 EPM excitation withρA/a = 0.01 and a pressure profile,βE = βE0 exp(−r2/L2

pE), with
LpE/R0 � 0.075 [12]. With the same parameters and profiles, FIG. 2 shows new simulation
results which illustrate the nonlinear dynamic evolution of ann = 8 EPM. After the first phase
in which the eigenmode structure forms (up tot = 36R0/vA, FIG. 2A), it appears clearly -
from the modifications in the fast ion line density - that strong particle redistributions take place
from t = 36R0/vA (FIG. 2A) up tot = 72R0/vA (FIG. 2B), which are consistent with the
mode-particle pumpingmodel [9] (particle radial convection). However, while it was shown
that these nonlinear dynamics dominate particle losses and mode saturation al low-n above the
EPM excitation threshold [5, 12], FIG. 2 indicates a new dynamical process that becomes im-
portant for nonlinear EPM evolution already at moderaten. Evident radial fragmentation of the
EPM coherent eddies (kθ = k‖ = 0, kr �= 0) is present in FIG. 2B, and it is visible both in the
contour-plots and in the radial variation of the various poloidal harmonics in which the eigen-
mode is decomposed. This fragmentation, meanwhile, is associated with a diffusive transport
of fast ions, as it may be inferred from modifications in the fast particle density profile up to
t = 144R0/vA (FIG. 2C).

The radial fragmentationof EPM coherent eddies has a clear analogy and possible overlaps
with more general nonlinear dynamics problems, and specifically with the spontaneous ex-
citation of zonal flowsby drift-Alfv én turbulence [13]. Within this framework, we have re-
cently demonstrated that EPM may yield tospontaneous excitation of zonal flowssince they
are modulationally unstable above a given amplitude threshold of the coherent eddies which
they form above their excitation threshold. The EPM nonlinear (NL) evolution is dominated by
fast ions nonlinearities (which enter in the ballooning interchange term in the vorticity equa-
tion [13]) for (αE/βi)(R0/r)

1/2(Ti/TE)ε−1
0 � 1, which is typical for unstable EPMs. Mean-

while, fast ions nonlinearities play a role via NL modifications of their nonadiabatic response,
δHk ∼ (δφ − v‖δA‖/c)k′δHz, wherek, k′ subscripts refer to the high frequency EPMs and
sidebands, generated via NL interaction with the low frequency zonal field (subscriptz). Thus,
the NL fast ion response is formally equivalent to aquasi-linear diffusion, consistently with
numerical simulations. In general, it is possible to show (details will be given elsewhere [14])
that the NL growth rate,Γz, of the EPM driven zonal flow associated withδφz is given by

Γz =
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Here, DR,I are the real and imaginary parts of the EPM linear dispersion function,v 2
E =

TE/mE, kz is the radial wave-vector ofδφz, A0 is the amplitude of EPM scalar potential fluctu-
ations,ω̂∗E = ω∗nE + ω∗TE[(v2

‖ + v2
⊥)/2v2

E − 3/2] for Maxwellian fast ions,Λ is the strength
of continuum damping,L�,σ = (v‖/qR0)($ + Λ + σ/2) − ω is the linear EPM propagator,λL

contains finite Larmor orbit effects,λd those of finite drift orbit width, andλz = (kz/k⊥)λd.
Meanwhile,< . . . > and<< . . . >> indicate, respectively, integration in velocity and bal-
looning spaces. It may be shown thatγ2

M ∼ ε0αE|kθρLE|k2
zv

2
A|δBθ/B|2. Thus, Eq. (1) gives

a Γz ∝ |δBθ/B|2/3 scaling. The zonal flow generation by EPM is also accompanied by a NL



frequency shift∆z = ±Γz/
√

3. Since Eq. (1) assumesΓz � |∆L|, with

∆L = (nq′)2∂
2DR/∂k

2
r

∂DR/∂ωr

[
1 − cos

(
kz

nq′

)]
,

it is evident that there is a finite amplitude threshold to overcome for the zonal flow excitation
and for radial fragmentation of the EPM coherent eddies to set in. Further analyses are in
progress to quantitatively compare our theoretical estimates ofΓz with numerical results.
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FIG. 2. : Nonlinear evolution of ann = 8 EPM at t = 36R 0/vA (A), t = 72R0/vA (B) andt =
144R0/vA (C). In each figure, six frames are visible. On the first row, from the left to the right: the
wave energy in each poloidal component, the line densityrn E(r) of energetic ions, and the radial mode
structure. On the second row: the contour plot for the scalar potential fluctuation in the laboratory frame
and at, respectively, the toroidal angles of a magnetically trapped and of a circulating particle (white
bullet).


