
Improved Stability due to Local Pressure Flattening in Stellarators

K. Ichiguchi 1), M. Wakatani 2), T. Unemura 2), T. Tatsuno 3), B.A. Carreras 4)

1) National Institute for Fusion Science, Oroshi-cho 322-6, Toki, Japan 509-5292
2) Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Japan 611-0011
3) Graduate School of Frontier Science, University of Tokyo, Tokyo, Japan 113-8656
4) Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

e-mail: wakatani@energy.kyoto-u.ac.jp

Abstract. It is demonstrated that the stability of low n pressure gradient driven modes is improved by introducing

local pressure flattening at low order rational surfaces in LHD (Large Helical Device) with the inward magnetic

axis shift of 25cm, where n is the toroidal mode number.

1. Introduction

The largest stellarator/heliotron device, called LHD (Large Helical Device), has successfully
started physics experiments [1]. The electron and ion temperatures, Te ∼ 3.8keV and Ti ∼
2.8keV, were obtained in the low density range, n̄e ∼ 1.5×1019m−3 [2]. The obtained energy
confinement time was about 50% better than the International Stellarator Scaling of energy
confinement [3]. The maximum average beta value, β̄ � 2.4%, exceeded 2%, which was the
highest beta obtained in stellarator/heliotron devices [4]. Since β̄ � 2.4% is not limited by
MHD instabilities and the target beta value of LHD is 5%, a higher power heating is expected
in an optimized magnetic configuration.

In this paper we will discuss effects of local pressure profile flattening on interchange modes
which may affect stability and confinement properties of LHD. For studying MHD stability
in stellarator/heliotron devices, the Mercier criterion [5] is valuable. For three-dimensional
MHD equilibria under the assumption of the existence of flux surfaces, the Mercier criterion
is usable for evaluating the beta limit [6]. Another important ingredient for three-dimensional
MHD equilibrium and stability is the formation of magnetic islands [7]. This problem is related
to the existence of three-dimensional nested flux surfaces [8]. The magnetic islands may be
produced by resonant perturbed magnetic fields which are generated by internal resistive MHD
instabilities or external error fields. If the magnetic islands appear at low order rational surfaces,
it is expected that the pressure profile becomes flat in the island regions. It is shown that the
MHD stability based on Mercier criterion changes significantly, although the pressure flattening
is highly localized in the neighborhood of rational surfaces [9-11]. For this situation the stability
limit of low mode number interchange modes becomes important.

2. Reduced MHD Equations and a Model Pressure Profile with Locally Flat Regions at
Rational Surfaces

For analyzing pressure driven instabilities in stellarator/heliotron devices, we use the ideal re-
duced MHD equations [6] [10] [12], which are written as
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Here ψ,u and P denote the poloidal flux function, the stream function and the plasma pressure,
respectively. The axisymmetric component of the magnetic field is given by B and R and ζ
denote the major radius and the toroidal angle, respectively. The magnetic axis is R = R0, and
the toroidal field at R = R0 is B0. Since the free-boundary effect is not significant for the stability
of currentless plasmas, a perfectly conducting wall is usually placed at the plasma boundary
[10]. It is noted that the equilibrium state of ψ is consistent with the rotational transform profile
due to stellarator fields.

For describing the locally flat pressure profile,

P(ρ) = C[P0(ρ)+Pax(ρ)+Pres(ρ)−A] (7)

is assumed, where P0(ρ) denotes a smooth and standard pressure profile, Pax(ρ) corresponds to
a pressure profile flattening near the magnetic axis given by

Pax(ρ) = [P0(0)−P0(ρ)]exp
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and Pres(ρ) acts to flatten the pressure at rational surfaces
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Here ρ denotes the square root of the normalized toroidal flux. In expression (7), A and C are
numerical factors to fix pressures at both the magnetic axis and the plasma surface. In expression
(8), wa denotes the width of a region to make the pressure profile flat near the magnetic axis.
Also, in expression (9), ρm denotes the position of the m-th rational surface and wm denotes the
width of a region to make the pressure profile flat at the rational surface ρ = ρm.

In order to calculate fixed boundary MHD equilibria for the LHD configuration with the pres-
sure shown by expression (7), the VMEC code was applied. In the following calculations the
LHD configuration with an inward magnetic axis shift of 25cm is assumed. Ideal MHD stabil-
ity against pressure driven interchange modes was studied with the RESORM code [13], which
solves linearlized equations of eqs(1-3) as an initial value problem.

3. Stabilization of Low-n Interchange Modes with Flat Pressure Regions at Rational Sur-
faces in Toroidal Plasmas

For the pressure profile given by Eq.(7) in the LHD model configuration, global pressure driven



modes with n = 1,2,3 are examined with the RESORM code [13], where n is the toroidal mode
number.

(I) n = 1 mode
The smooth pressure profile P0(ρ) and the rotational transform profile ι(ρ) are plotted in Fig.1.
The rational surfaces for the n = 1 mode, ι = 1/1, and ι = 1/2, are shown with the dotted lines
in Fig.1. Here the central beta value is assumed 2%. The unstable n = 1 mode exists with a
growth rate of 4.846×10−2, which is destabilized at the ι = 1/2 surface. Here the growth rate
is normalized by the poloidal Alfvén time. When the flat pressure region with the width w is
increased at the ι = 1/2 surface, the growth rate decreases. The pressure profile marginally
stable against the n = 1 with w = 0.045 is shown in Fig.2.

(II) n = 2 mode
Here the same pressure and rotational transform profiles as shown in Fig.1 are used for the sta-
bility analysis of the n = 2 mode. However, the relevant rational surfaces increase; ι = 2/2, ι =
2/3, ι = 2/4 and ι = 2/5. The RESORM code shows that the n = 2 mode is destabilized at
the two rational surfaces, ι = 2/4 and ι = 2/5. Here the growth rate is γ = 7.187× 10−2 at
β (0) = 2%. Thus it is required to introduce two locally flat pressure regions with different
widths at ι = 2/4 and ι = 2/5 for stabilizing the n = 2 mode. When w = 0.02 at ι = 2/4 and
w = 0.04 at ι = 2/5, the instability is suppressed completely and the obtained pressure profile
is shown is Fig.3.

(III) n = 3 mode
For the LHD configuration with the pressure and rotational transform profiles shown in Fig.1,
there are six rational surfaces; ι = 3/3, 3/4, 3/5, 3/6, 3/7, 3/8. For the case of Fig.1 the
RESORM code gives the growth rate γ = 8.233×10−2 at β (0) = 2%, and the unstable mode
is localized at the central region with a ballooning structure. These are typical characteristics
of the toroidal non-resonant pressure-driven mode [14]. In order to suppress this non-resonant
mode, the central pressure profile is flattened first with wa = 0.6 in Eq.(8). Then the growth rate
decreases to γ = 6.975×10−2, and the unstable mode has a typical interchange mode structure
destabilized at ι = 3/4, 3/5, 3/6 and 3/7. For suppressing the pressure driven interchange
mode with n = 3 completely, flat pressure regions are generated at the four rational surfaces
with w = 0.03 at ι = 3/7, w = 0.03 at ι = 3/6, w = 0.02 at ι = 3/5 and w = 0.02 at ι = 3/4.
The obtained pressure profile with β (0) = 2% is shown in Fig.4. The average beta value is
changed from β̄ = 0.632% (see Fig.1) to β̄ = 1% (see Fig.4).

It was demonstrated that the pressure driven modes with n = 1, n = 2 and n = 3 can be sta-
bilized by generating the locally flat pressure regions at the relevant rational surfaces sep-
arately. Furthermore it is confirmed that the n = 1, 2, 3 modes become stable simultane-
ously when the pressure profile is described with wa = 0.6 and locally flat regions with w =
0.025, 0.03, 0.065, 0.03, 0.025, 0.02 at ι = 0.4, 3/7, 0.5, 0.6, 2/3, 0.75, respectively.

4. Concluding Remarks

It is expected that locally flat pressure regions are produced by the non-linear evolution of re-
sistive interchange modes which become unstable for beta values less than the Mercier limit.
The other possibility to produce the locally flat pressure regions is external application of res-
onant helical magnetic fields. It has been demonstrated that pressure driven instabilities with
low toroidal mode numbers are stabilized by modifying the pressure profile to make locally flat



pressure regions in the LHD model configuration. It is noted that large pressure gradients near
the magnetic axis destabilize the non-resonant modes with medium toroidal mode numbers such
as n = 3 or 4. Therefore, in order to increase the ideal beta limit, broad pressure profiles with
several locally flat pressure regions at dominant rational surfaces may be appropriate in LHD.

There are some indications that the experimental beta values exceed the Mercier limit when
smooth and monotonic pressure profiles are assumed in CHS [15,16] and Heliotron E [17].
Formation of the above mentioned locally flattened pressure profiles at low order rational sur-
faces may explain the discrepancy. The important assumption is that the resistive interchange
instabilities unstable in the magnetic hill region are responsible for generating such profiles. The
other possibility to explain the discrepancy is that high-n pressure driven modes do not play a
role due to the finite Larmor radius stabilization [6]. It is noted that the LHD high beta plasma
has already obtained β̄ � 2.4%, which seems to exceed the Mercier limit. Future experiments
on LHD high beta plasmas are expected for checking our conjecture.
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FIG.1. An assumed pressure profile and a rotational
transform profile in the LHD configuration with the
inward magnetic axis shift of 25cm obtained by the
VMEC code[18]. The dotted lines show ι = 1/1
and ι = 1/2. The central beta value is β (0) = 2%
and the average beta value is β̄ = 0.632%. The
radius ρp denotes the square root of the normalized
poloidal flux, which is also used in Figs 2-4.
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FIG.2. A pressure profile marginally stable against
the n = 1 pressure driven mode with the width of
the flat pressure region w = 0.045. The rotational
transform profile obtained by the VMEC code, and
rational surfaces with ι = 1/1 and ι = 1/2 are also
shown.
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FIG.3. A pressure profile marginally stable against
the n = 2 pressure driven mode with the flat
pressure regions given by w = 0.04 at ι = 2/5 and
w = 0.02 at ι = 2/4. The rotational transform
profile obtained by the VMEC code, and rational
surfaces with ι = 2/2, 2/3, 2/4, 2/5 are shown.
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FIG.4. A pressure profile marginally stable against
the n = 3 pressure driven mode with the flat
pressure regions given by w = 0.03 at
ι = 3/7, w = 0.03 at ι = 3/6, w = 0.02 at ι = 3/5
and w = 0.02 at ι = 3/4. The rotational transform
profile obtained by the VMEC code, and rational
surfaces with ι = 3/3, 3/4, 3/5, 3/6, 3/7, 3/8
are shown.


