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Abstract. Local flattening of the pressure profile at the resonant surfaces may significantly change the
stellarator stability properties. This flattening may be an intrinsic consequence of the three-dimensional nature
of the equilibrium and may invalidate the local stability criteria often used in stellarator design.

1. Introduction

There are many reasons to suspect that pressure profiles with zero gradients at the rational
surfaces may be the relevant profiles for stellarators. The existence of a three-dimensional
(3-D) toroidal equilibrium is still an unresolved mathematical problem [1].  Of course,
numerical solutions of the equilibrium magnetohydrodynamic (MHD) equations are
commonly calculated; however, they may just be weak solutions of these equations [2]. The
3-D equilibrium may have magnetic structures at the rational surfaces that increase transport
in those regions, therefore decreasing gradients.  Other arguments can be made for such a
pressure profile. From the perspective of having smooth particle fluxes in a 3-D equilibrium,
Boozer [3] suggested that the pressure-gradient should be zero at the singular surfaces.  In
dynamical calculations of equilibria unstable to resistive interchanges, we have seen the
formation of these flat spots at the resonant surfaces even for very low values of beta.  In
those calculations, we have observed a delicate interplay between resistive and ideal
interchange modes.  The first causes the local flattening of the pressure profile, which then
causes a modification of the stability threshold for the ideal modes.  Finally, in experiments,
high-resolution electron temperature and density measurements in TJ–II [4] show the
existence of multiple structures that may be related to the resonant surfaces.  Therefore, it is
reasonable to assume that the pressure profiles in stellarators have a complex structure with
zero-gradient at each rational surface. The size of these flat spots can be very small, but even
in such cases there are important consequences for stellarator stability.

2. Linear Stability Properties of Low-n Interchange Modes for Pressure Profiles with
Zero Gradient at the Singular Surfaces

Interchange modes extend uniformly along the magnetic field lines.  They are flutelike
instabilities.  Therefore, for these instabilities it is possible to average over the toroidal
magnetic field modulation induced by the helical windings.  Using the Greene and Johnson
formalism [5] and assuming a straight helical system, the averaged equilibrium magnetic
field geometry has cylindrical symmetry.  In such a system, we consider magnetic
configurations with bad curvature and rotational transform with shear. For the numerical
calculations, we have the form of the averaged curvature in a helically symmetric system:

dΩ
dr

= ε2 M 4rι +r 2 ′ ι ( ) .  (1)



Here, ε is the inverse aspect ratio, M is the number of toroidal field periods, and ι is the
rotational transform. For the calculation presented in this paper, we have used
ι =0.32 1 + 2.2r2 − 0.46r4 + 2.5r 6( ). For a smooth pressure profile, such as p0 r( ) = p 0 1 − r2( ) ,

the linear growth rate of an interchange mode has a dependence with beta as illustrated in
Fig. 1 (continuous line).  For these instabilities, the eigenfunction is sharply localized and
symmetric with respect to the singular surfaces. We investigate the change in these stability
properties when we consider a pressure profile, p(r), which is like p0(r) but with zero gradient
at the resonant surfaces. To obtain such a profile, we modify the smooth pressure profile

p r( ) = p0 r( ) − dp dr( )
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where Wm is a measure of the size of the flat spot.  Even for very small values of Wm, there is
a qualitative change of the stability properties described previously. For instance, Fig. 1
shows the linear growth of the instability (broken line) after modifying the pressure profile as
described by Eq. (2) with Wm a = 0.004 .  The result is that the instability threshold has
increased by more than 60% and the form of the eigenfunction has changed. For this profile
and at low beta, the localized interchange instability branch is stable, and two other types of
modes are now possible (Fig. 2).  Their eigenfunctions are mirror-symmetric with respect to
the resonant surface, and which one has the larger growth rate depends on details of the
profiles and the exact location of the flattening.  Some of these changes in the stability
properties of cylindrical plasmas have already been discussed elsewhere [6]-[9].  In Figs. 1
and 2, the linear stability results are for the (m = 6; n = 3) mode with the resonant surface
located at r/a ≈ 0.50. The lower-m (m < 3) radially symmetric interchange modes may
require a larger size flat spot for stabilization for a fixed beta value [6].  Note that the
modification of the pressure profile by local flat spots with a width of Wm a = 0.004 is hardly
noticeable, and it would require very high resolution diagnostics to detect it in an
experiment. The linear stability calculations also require very high resolution. Here, we have
used a radial grid of ∆r a = 4 × 10−5 .

An analytical solution for the linear stability problem with modes like the ones in Fig. 2 can
be found by dividing the minor radius in the three regions. One region is between the
magnetic axis and the singular surface. In this region, we assume a constant rotational
transform, ι0, and parabolic pressure profile. A second region of width W is centered at the
singular surface, and we assume that the profiles have zero pressure gradient and small
magnetic shear. In the outer region, the values of the parameters do not matter because the
eigenfunction is taken to be zero.  Matching the solutions in these three regions, one obtains
an eigenvalue condition that gives the following form for the linear growth rate:
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Here, Ds = 4β0 Mι 0( ), ′ j ms  is the sth zero of the derivative of the Bessel function of order m,
and W is the width of the flat spot at the rational surface.  Near the critical point, the
calculated growth rate is very sensitive to the value of each of the two terms in the rhs of Eq.
(3).  Because we had assumed that the rotational transform is constant within the inside
region, it is difficult to determine the proper value to use for ι0.  An evaluation of ι0 will be
given elsewhere.  However, in comparison with the numerical results, we found it useful to

plot γ2 versus rs − W 2( )2
.  The numerical results are well described by a straight line, and



the value of the coefficient of rs − W 2( )2
 (Fig. 3) agrees with the value calculated from the

analytical result, C = Ds m ′ j msr0( )2
.

These changes on stability properties caused by the pressure profiles with flat spots at the
resonant surfaces are not limited to cylindrical geometry.  By using the averaging method for
a realistic stellarator geometry and including the toroidal couplings in the model, one obtains
similar results [8, 10].

3. Asymptotic Behavior and Beta Critical

We can see from Eq. (3) that the growth-rate dependence with m is quite different from the
dependence of the local ideal interchange instability. For the latter, the linear growth rate is
very weakly dependent on m. In the case of pressure profiles with local flattenings, the
high-m modes are strongly suppressed (Fig. 4).   Hence, the asymptotic stability criteria
derived for m cannot give any information on the stability of the modes described by Eq. (3).
In contrast, those criteria became undefined in the case of a zero pressure gradient in each
rational surface.  Therefore, for those pressure profiles, the asymptotic local stability criteria
cannot be applied.

From Eq. (3) we can calculate the corresponding beta critical for these new instabilities:
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If we take the smooth profile p0(r) corresponding to the pressure profile with flat spots p(r),
we can calculate the beta critical given by the Suydam criterion,
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If we take ι0 to be the rotational transform at the magnetic axis, then rs dι dr( ) ≈ n m −ι0( ).

We can compare the real beta critical, Eq. (4), with the Suydam beta critical, β0 S
c , and we

obtain β0
c ≈ 2 ′ j m1( )2

β0S
c .  That is, the real beta critical may be an order of magnitude higher

than β0 S
c .

Therefore, local stability criteria such as the Suydam criterion are not relevant for such
pressure profiles, although it can be used as a measure of stability once it is conveniently
renormalized.

4. Conclusions

For stellarator equilibrium with zero-pressure gradient at the rational surfaces, local
asymptotic stability criteria cannot be applied. For stellarators, the Mercier criterion has the
same problems as the Suydam criterion in cylindrical geometry.  It is a local stability
criterion that cannot be applied to such pressure profiles. Calculations using the averaged
method approach indicate that the stability properties for the low-m modes [8, 10] are similar
to the case of cylindrical geometry.  The local interchange-like modes are stabilized, and the
more global eigenfunctions appear as the residual instabilities with the increase of beta.  The
beta critical also increases more than the one obtained for smooth pressure profiles.  These
results may explain the apparent violation of this criterion when smooth pressure profiles are



used in the calculation of the stability for interpretation of the experimental measurements
[11].
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FIG. 1. Linear growth rate of the m = 6 mode
for a parabolic pressure profile.
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FIG. 2. Eigenfunctions for the m = 6 mode for
the most likely unstable modes once the
localized interchange mode has been
stabilized.
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FIG. 3. Square of the linear growth rate of the

m = 6 mode versus rs − W 2( )2
 for

β 2ε2 = 0.345 . The slope of the straight-line
fit agrees with the prediction of the analytical
model.
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FIG. 4. Linear growth rate as a function of m
at the 4/3 rational surface for a smooth profile
(W = 0) and with a flat spot that is 1% of the
size of the minor radius (W = 0.01).


