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Abstract:

Density limits in stellarators are caused mainly by enhanced impurity radiation leading to a
collapse of the temperature. A simple model can be established, which computes the temperature
in the plasma with a fixed heating profile and a temperature-dependent radiation profile. If the
temperature-dependent radiation function has one or several extrema, multiple solutions of the
transport equation exist and radiative collapse occurs when the high temperature branch merges
with the unstable temperature branch. At this bifurcation point the temperature decreases to a
stable low temperature solution. The bifurcation point is a function of the heating power and the
plasma density. Thus a density limit can be defined as the point where bifurcation occurs. It is
shown that bifurcation and sudden temperature collapse does not occur below a power threshold.
Anomalous thermal conductivity and the details of the impurity radiation, which in the present
model is assumed to be in corona equilibrium, determine the scaling of the density limit. A model
of the anomalous transport is developed, which leads to Gyro-Bohm scaling of the confinement
time. The density limit based on this transport model is close to experimental findings in
Wendelstein 7-AS.

1 Introduction

In Wendelstein 7-A [1] and Wendelstein 7-AS [2] with neutral beam heating the pheno-
menon of radiative collapse was found when the density in the plasma exceeds a certain
value, which depends on the heating power and other parameters such as the magnetic field.
The radiation power rises with rising electron density until the radiation power is a certain
fraction of the heating power and the temperature strongly decreases.

The first theory of the density limit in stellarators was made by S.I.-Itoh and K. Itoh [3],
who explained this limit as the result of a detachment process. The idea of a radiation-induced
density limit has also been analysed by Sudo et al. [4], who, based on Itoh´s ideas, proposed a
simple equation, which gives the maximum density in term of heating power and magnetic
field. Details of the confinement properties and the plasma profiles do not occur in this
equation. Recently Giannone et al. [5] have analysed data from Wendelstein 7-AS resulting in
a density limit, which is similar to the Sudo-limit. On the other hand the heat balance equation
contains the thermal conductivity, which is closely related to the energy confinement time. In
the following we start from the heat conduction equation and – by dimensional analysis –
derive a relation between anomalous thermal conductivity and energy confinement time as
found in the experiment. Taking into account the bifurcation property of the solution with
finite radiation losses the density limit is defined by a bifurcation point of the temperature,
where stable and unstable solutions of the conduction equation merge and where the system
makes a rapid transition to a low-temperature solution. From the scaling of this bifurcation
point a scaling of the density limit can be obtained.



2 Thermal Conduction Equation

In general the temperatures of ions and electrons in a plasma are different and two separate
transport equations need to be solved, however in a high density NBI heated plasma or in a
fusion plasma the temperatures are about equal and by adding up the two transport equations
we get one equation for a common temperature. This steady-state heat conduction equation is

• ( ) • = ( ) ( ) ( ) ( )n x T T h x T n x n x L L Tzχ , , 0 Eq. 1

Here h(x,T) is the heating term and x is the radial coordinate. The thermal conductivity is the
sum of a neoclassical term and an anomalous term. nz is the density of the impurities and n is
the density of electrons. L(T) is the dimensionless radiation function, which has a maximum at
a certain temperature Tmax. L0 is the value at this temperature, which makes the dimensionless
function L(T) smaller than 1. These parameters L0 and Tmax depend on the impuritiy species.
The heating function is redefined as h–>hmaxh(x), where h(x) is a dimensionless heating
profile and hmax is the maximum local heating power. The factor hmax is proportional to the
total heating power. The ansatz of the heat conduction is χ=χ0g(x) where g(x) is a profile
function, which does not depend on other parameters. However the factor χ0 describes the
dependence on magnetic field, geometric factors etc. The densities in this equation are a given
functions and we normalise the densities to the maximum density n–>n0n(x), nz–>Nznz(x),
where now n(x) and nz(x) are a profile functions. Normalising the spatial coordinates to the
minor plasma radius a leads to the heat conduction equation in the form
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T is dimensionless and normalized to T0 and Ω is the gyro frequency. The reference tempera-
ture T0 is either a fixed temperature or it can be defined by setting H  = 1. H  is the ratio
between the heating power and the power loss by heat conduction and λ denotes the ratio
between radiation loss and heating power. A general form of the thermal conductivity in non-
dimensional form is
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ρ is the gyro radius and ι  is the rotational transform. β is the ratio between plasma pressure
and magnetic pressure. The function G depends on the physics of the anomalous transport. In
a stellarator there might be more geometrical parameters like shear or the number of field
periods, which are relevant for anomalous transport; here we have only retained aspect ratio
and rotational transform. The gyro radius and β are computed with the temperature T0.

3 Resistive turbulence model

Resistive ballooning modes in general toroidal equilibria have been investigated by D.
Correa-Restrepo [6] and in a recent paper Correa-Restrepo has investigated resistive
ballooning modes in the boundary region of toroidal plasmas [7] coming to the conclusion,
that this region is resistively unstable. In particular, it was found that shear and magnetic well



have little or negligible effect on the low-N ballooning modes. Numerical investigation of
resistive ballooning modes in Wendelstein 7-AS and Wendelstein 7-X by R. Kaiser [8]
showed overstable modes, which occur at any plasma β below the threshold of ideal
ballooning modes. For these reasons it must be expected that MHD-turbulence exists in the
boundary regions of any toroidal plasma experiment.

In the resistive turbulence model the anomalous perpendicular conductivity is the result of
magnetic fluctuations and classical parallel conductivity, which in normalized form is
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Rm is the Lundquist number. The details of this function F cannot be found without further
numerical analysis. Here a few plausible arguments will be given, which are needed to justify
a simple ansatz for the fluctuation level. The energy source of the fluctuations is the plasma
pressure and therefore F will be a growing function of β0. Furthermore, plasma resistivity is
the reason for decoupling plasma and magnetic field and thus it is expected that the
fluctuations grow with resistivity or – equivalent to that – they scale inversely to the
Lundquist number. Resistive instabilities (interchange modes or ballooning modes) are driven
by the curvature of the field lines. Measuring the curvature in terms of 1/R (R = major radius)
we expect that the fluctuation level scales with the inverse aspect ratio. A simple ansatz
exhibiting these features is
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where F0 is a constant and g(x) is a dimensionless radial function describing the increase of
the magnetic field fluctuations towards the plasma boundary. This scaling can also be
interpreted as follows: the energy reservoir for magnetic fluctuations is the thermal energy of
the plasma, which explains why the energy density of the magnetic fluctuations is
proportional to plasma beta. Resistivity opens this reservoir for instabilities, this is why the
inverse Lundquist number occurs. The profile function g(x) accounts for the increase of the
turbulence level towards the plasma boundary, where the resistivity and hence the decoupling
is large. The rest are geometrical factors like inverse aspect ratio or the rotational transform,
which might also help to reduce the fluctuation level. In terms of the reference temperature
the space-independent factor is

F
R

a
R

n

B T Rm
0

0 0
2

0

β
~ Eq. 7

Combining eqs. 5,6 and 7 shows that the anomalous thermal conductivity follows the Gyro-
Bohm scaling. Putting all terms together yields a heating parameter, which is
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The constant C1 absorbs all constants and profile factors. The transport equation is now
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Setting H equal to unity yields the scaling of the reference temperature T0 as follows
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With this definition of the reference temperature all parameters have been dropped from the
transport equation and the solution of the dimensionless transport equation is a function T(x)
depending on the profile function g(x) and h(x) alone. The plasma energy is
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which leads to a scaling of the confinement time
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Eq. 12

4 Bifurcation of temperature

Next we consider the transport equation with finite radiation losses. The solutions of the
complete heat conduction equation with H=1

−∇ • ( ) ( )∇ = ( ) − ( )n x g x T h x nn L TTzλ 0 Eq. 13

depends on two parameters T0 and λ.
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Fig. 1: Maximum temperature as function of
the radiation parameter λ.

Note that T0 is a function of the heating
power given in Eq.11. If the radiation para-
meter λ is small enough, only one solution
exists. However, starting from a critical value
of λ1 more than one solution can exist [9]. A
necessary condition for this effect is the
existence of a temperature regime where the
radiation function has a negative slope.
Above a second critical λc = λ2 only one low
temperature solution can exist. These critical
value of λ depend on the heating parameter
and the can be utilized to define a density
limit. A sketch of this situation is given in
Fig. 1.

The critical radiation parameter λc where bifurcation occurs is a monotonously increasing
function of the heating parameter λc = Λ(T0); or, going back to the definition of the parameters
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Ch and C1 are profile factors, fz is the fraction of impurities. The function Λ is determined by
the profile functions in the transport equation. Since the solution T(x,λ,H) depends on the
parameters λ and H, Eq. 15 provides a non-linear relation between the critical λ and the
heating parameter H. The critical parameter λc increases with heating power. Let us assume
that Λ obeys a power law with an exponent γ ,  then from Eq. 15 the result for the density is
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C2 is a coefficient, which combines all profile factors. As an example we choose γ = 5/2, this
yields
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The density scales with P2/3 B2/3 and inversely with the cubic root of the plasma volume.
Assuming γ = 3 would yield the scaling with P11/16 B3/4. As numerical computations have
shown, the scaling of the density limit depends on the details of the radiation function and the
localisation of the impurities in the radial direction [10].

5 Conclusions

In the present analysis an attempt has been made to understand the density limit and the
radiative collapse in stellarator experiments on the basis of a combined effect of temperature
dependent radiation power and anomalous thermal conductivity of the plasma. The transport
equation has several solutions in a limited regime of the control parameter λ, which is pro-
portional to the product of plasma density and the density of impurities. The radiative collapse
of the temperature occurs when a bifurcation point λc has been reached, where a stable and an
unstable solution merge. This bifurcation point provides a relation between magnetic field,
heating power and plasma density and thus allows one to define a density limit. How the
bifurcation point depends on heating power, magnetic field and plasma density is determined
by the radiation function and the localisation of the impurities. For this reason it is not
possible to formulate a scaling law of the density limit, which is valid for all impurity species.

Gyro-Bohm scaling of the anomalous transport coefficient can be derived from a resistive
turbulence model leading to magnetic fluctuations and an effective perpendicular transport
due to a large parallel thermal conductivity of electrons. The effect is related to the concept of
Rechester and Rosenbluth, who explained anomalous transport by magnetic braiding and
parallel transport of electrons. The transport model is based on dimensional analysis, which
does not allow one to predict the exact scaling of the anomalous transport coefficient, how-
ever with some plausible arguments on β-dependence and dependence on Lundquist number
the gyro-Bohm scaling of the energy confinement time can be derived.
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