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Abstract. A mechanism is proposed and evaluated for driving rotation in tokamak plasmas by minority ion-
cyclotron heating, even though this process introduces negligible angular momentum. The mechanism has two
elements: First, angular momentum transport is governed by a diffusion equation with a non-slip boundary
condition at the separatrix. Second, Monte-Carlo calculations show that energized particles will provide a
torque density source which has a zero volume integral but separated positive and negative regions. With such a
source, a solution of the diffusion equation predicts the on-axis rotation frequency Ω to be Ω = (4qmaxW J* )
eBR3a2ne(2π)2)-1(τM/τE) where |J*| ≈ 5-10 is a nondimensional rotation frequency calculated by the Monte-
Carlo ORBIT code. Overall, agreement with experiment is good, when the resonance is on the low-field-side of
the magnetic axis. The rotation becomes more counter-current and reverses sign on the high field side for a no-
slip boundary. The velocity shear layer position is controllable and of sufficient magnitude to affect
microinstabilities.

1. Introduction

Control of plasma rotation is an effective method for optimizing magnetic fusion plasmas.
Differential rotation increases the stability of fine scale modes, which cause turbulent
transport, as well as of large-scale distortions of the entire plasma. In the case of turbulent
modes, differential rotation breaks up their structure and prevents growth [1,2]. Large-scale
modes acquire increased stability when, by differential rotation, magnetic distortions which
are fixed in the frame of the plasma appear as time-dependent fluctuations in the frame of a
conducting shell which surrounds the plasma. Consequently, with sufficient differential
rotation, these fluctuations can not penetrate the shell, increasing the maximum pressure that
can be stably confined [3,4].

The physics of plasma rotation and the generation and transport of angular momentum density
is therefore interesting both as a fundamental physics process and as the basis for a plasma
control tool. Review articles by Ida [5] and Chan [6] give a comprehensive account of radial
electric field and plasma rotation observations and a detailed discussion of the interaction of
radiofrequency heating methods with plasma rotation, respectively. Rotational response of
plasmas to angular momentum input is observed to have a momentum confinement time τM
comparable to the observed energy confinement time τE (cf., Section 4.2 of [5] and [7-9]) and
an angular momentum diffusivity profile similar to the anomalous heat diffusivity profile.

Recently, observations of Alcator C-Mod plasmas have discovered that plasma heating by the
fast-wave, minority-ion-cyclotron process can cause an appreciable co-current toroidal
rotation to develop in the vicinity of the magnetic axis, even though the heating method
provides negligible angular momentum [10-12]. Alcator C-Mod observations have further
established that the central rotation velocity increases roughly linearly with the plasma energy
content and that the rotation is strongly peaked toward the plasma center when the ion-
cyclotron resonance is close to the magnetic axis. The rotation profile broadens as the
cyclotron resonant surface moves to larger minor radius. The sense of rotation is co-current
when the ion-cyclotron resonance lies on the low-field-side of the magnetic axis. The co-
current rotation reported in ohmically-heated Alcator C-Mod plasmas [13] lies outside the
scope of this work but could possibly be understood in terms of a modification of the no-slip
boundary condition introduced below.



How can a plasma develop an angular momentum content when none is supplied? This paper
proposes and evaluates a mechanism which resolves the apparent conflict. The argument has
two parts. First, it is assumed that angular momentum transport is governed by a diffusion
equation that has a no-slip boundary condition at the separatrix and a torque density source
term as discussed below. If the torque-density source term has two separated regions, one
with positive and the other with negative torque density, but is constrained to have zero
volume-integrated torque, then the solution of the angular momentum diffusion equation will
yield a finite central rotation rate. The physics picture is that angular momentum generated in
the outer part of the plasma diffuses to the surface and is lost faster than that supplied to the
inner part.

The second part of the argument rests on an evaluation of the torque density applied to the
bulk plasma arising from the slowing down of ions accelerated by the minority-ion-cyclotron
process. The cyclotron acceleration process itself introduces no angular momentum. The
motivating physics picture is that, as a result of finite banana widths and collisions, a fast ion
which is born on an initial magnetic surface will slow down and return to the bulk plasma
over a distribution of magnetic surfaces. This constitutes a radial current in the fast particles.
A neutralizing radial current then flows in the bulk plasma which produces a jrBθR torque
density. This is just the separated region of torque density needed to drive rotation. However
this simple picture must be augmented by collisional transfer of mechanical angular
momentum from the fast particles to the bulk plasma, which is of the same magnitude as the
jrBθR torque density. Thus a precise calculation of all sources of torque density that
rigorously accounts for angular momentum is required to determine whether torque density
will be applied to the bulk plasma and to determine its sense. The Monte-Carlo code ORBIT
[14,15] has been modified to rigorously account for collisional momentum exchange between
energetic particles and a bulk plasma as well as providing for stochastic energization by
perpendicular energy diffusion. The present work differs from previous theoretical models
[16] in its rigorous accounting of angular momentum, the role of radial currents associated
with energetic-ion banana diffusion, and the use of a diffusive transport equation to describe
plasma response to torques.

The manuscript first describes our models for fast wave propagation and ion-cyclotron
heating. Next, we develop a solution to the angular momentum diffusion equation in general
axisymmetric geometry defining the integrated collisional and jrBθR torque densities that the
ORBIT code must compute. Additions to ORBIT for this work are summarized. Results give
plasma rotation curves parametrized by location of the ion-cyclotron resonance. A discussion
of their sensivity to input parameters, correspondence to experiment, and a conclusion follow.

2. Two-Component Plasma Model

The starting point for our model is to separate the plasma into two components: a high-energy
tail created by minority ion-cyclotron heating whose evolution will be followed by the Monte-
Carlo ORBIT code and a bulk plasma, which responds to applied torque density via a
diffusive angular momentum transport equation with a model momentum diffusivity profile
χM = a2qn/CnτM that spatially depends on q. Here τM denotes the momentum confinement
time, which is taken comparable to the energy confinement time τE [5,9]. The motivating
physics comes from the observation that if one interprets the almost linear dependence of
tokamak energy confinement time on a q-dependent diffusivity, then n≥2. We will focus on
n=2 and for which C2 =  2(1+κ-2) qmax based on an analytic power balance model.

3. Fast Wave Propagation

An important aspect of fast wave heating is that refraction focuses the waves onto the
magnetic axis region and continues to maintain high wave intensities near the midplane for
major radius values less than the magnetic axis. Calculations by the TORIC code [17] ,
portrayed in Fig. 1 illustrate this. Qualitatively, one can capture this aspect of fast wave
heating by defining an intense wave region as portrayed in Fig. 1. Particles will undergo ion-
cyclotron energization only if their orbits cross the cyclotron resonance surface within the



intense wave region. This has the consequence of limiting the range of magnetic surfaces
where ion-cyclotron heating can take place and generating regions of high rotational shear,
especially when the cyclotron resonance lies to the high-field-side of the magnetic axis. The
boundary ±zo of the intense field region has been taken to be

 
zo =

zmax R – Ra < zmax

R – Ra R – Ra > zmax
(1)

with Ra the magnetic axis major radius and zmax = 7 cm for Alcator C-Mod example of
Fig. 1.

4. Ion-Cyclotron Heating

Two models for ion-cyclotron heating have been used. Model 1 instantaneously energizes
a particle from the bulk plasma to a specified energy Eo. This initial creation is
rigorously constrained to introduce zero net angular momentum and canonical angular
momentum for each particle, as is appropriate for ion-cyclotron heating, and is effected
by starting energetic particles with their banana tips lying on the cyclotron surface within
the intense wave region. A distribution with off-midplane, banana-tip height with z,

 dN /dz = 1– (z / zo)
2 2zo – z2 –1 / 2

is used so that only particles in the intense wave
illustrated in Fig. 1 are created. The energetic ions are then followed until they lose all their
energy by the Monte-Carlo ORBIT code [14,15], which includes ion-ion pitch-angle-
scattering collisions [18] as well as ion and electron energy drag collisions . These collisions
return energetic particles to the bulk plasma distributed over a region comparable to the
banana full width about the originating magnetic surface. Our assumption that the fast waves
transfer no net angular momentum to the energetic particles is rigorous for fast-waves with
k|| = n/R = 0. For realistic values n ≈ ±10, it can be shown that angular momentum input
remains negligible for a balanced n-spectrum.

Ion-cyclotron Model 2 introduces ion-cyclotron heating by giving a particle a stochastic kick
in perpendicular energy ∆E⊥ each time it passes through the cyclotron resonance surface. The
kicks are given by

<(∆E⊥)2> = 2 E⊥ Es <∆E⊥> = Es (2)
where

  
Es = c⊥

4π νoq Rc Eo Mp
1 / 2

2(E – E⊥) + T
1 / 2

F(z) αc

α2 + αc
2 1 / 2 (3)

We note that equal changes in E and E⊥ leave v|| and the canonical angular momentum
unchanged. Therefore this operator introduces no angular momentum. The quantity Es is
constructed to have properties expected of ion-cyclotron heating. In particular, the mean
square energy kick should be proportional to E⊥, inversely proportional to v||·R/R, be limited
to the strong wave region, and have the rate of energy increase for a particle injected at energy
Eo comparable to its loss of energy via coulomb collisions. Thus, Es, as given below, is a
function of Rc, z, νo, E, E⊥,q, Eo, and T — all evaluated at the cyclotron resonance crossing
point. The adjustable constant c⊥ governs the energy input via ICRF heating to be large, but
not very large, compared to the initial particle parameter νoEo. It is expected that c⊥ will be
close to unity. The parameter α = α(Rc, z) = R·φ×∇ψ(R ∇ψ)−1 depends only on magnetic
surface geometry and reflects the degree of tangency between the magnetic surface and the
cyclotron resonant surface. An ad-hoc cutoff at αc = 0.1 prevents mathematical divergences.
The formula for F(z) describes the strong field region

 
F(z) = 2 1 – z2

zo
2 2 – z2

zo
2

–1 / 2

(4)

With this model, initial particle parameters are a monoenergetic, isotropic velocity
distribution at energy Eo and are distributed uniformly in space for Φ(Rc,0) < Φ < Φ(Rc, zo).



Intense Wave
Region

FIG. 1. Propagation of the fast wave in Alcator
C-Mod when the ion-cyclotron resonance lies at
-8 cm, well to the high-field-side of the magnetic
axis. The toroidal mode number is n=10 is
representative of the antenna spectrum.

This initial condition introduces zero angular
momentum. Again, particles are followed by
ORBIT until they reach zero energy. This
model is closer to actual ion-cyclotron
heating, but produces a bias rotation, which
we discuss and correct for below.

5. Angular Momentum Diffusion

The general, steady-state axisymmetric
angular momentum transport equation
equates angular momentum flux through a
flux surface to the torque generated inside
that surface.

dl∫ × φ ⋅ ∇̂Φ2π R3 n M(χoqn )
∂Ω
∂Φ

= − T(Φ) N̂ Ra
2 Ωa (5)

where Φ denotes the area enclosed by a
magnetic surface in the poloidal plane and
serves as the independent flux-surface label.
Here Ω  denotes the angular rotation rate,
which must be constant on a flux surface,
and T(Φ) is the nondimensional integrated
torque-per-particle exerted on the plasma

inside magnetic surface Φ and is computed by ORBIT. The fundamental mass, length, and
frequency units used by ORBIT are the proton mass, the major radius, and the ion-cyclotron
frequency, both evaluated at the magnetic axis.  N  denotes the rate at which particles are
supplied and is related to the applied power through  N E = P where E is the average net
energy-per-particle transferred from the energetic particles to the bulk plasma. For ion
cyclotron Model 1, E=Eo .

We will neglect variations of R and the effective diffusivity χoqn on a magnetic surface.
Equation (5) can then be recast as

  1
N

∂Ω
∂Φ = –

T(Φ) Ωa

8π2 Φ H(Φ) n R χoq
n

(6)

where H(Φ ) is defined by
   4π Φ H(Φ) = dl ×× φφ · ∇∇ Φ = dA ∇2Φ (7)

where the integral is over the area inside the magnetic surface. It can be shown that H(Φ ) is a
surface function, will be close to unity, and depend only weakly on the shape of the magnetic
surface. Therefore, the expression for the rotation rate becomes

  1
N

Ω(Φ) – Ω(Φmax) =
Ωa

8π2 n R χo

T(Φ) dΦ
Φ qn

Φ

Φmax

. (8)

The integrated torque will also have a surface contribution when particles are being lost from
the plasma. The requirement for zero angular momentum input is T(Φmax) = 0. Equation (8)
computes the rotation rate from the Integrated Torque T. Angular momentum conservation
requires T(Φmax) = 0. A simple q-profile is employed q = 1+(qmax-1)·(Φ/Φmax).

The physics rationale for a surface no-slip boundary condition Ω(Φmax) =0 derives from the
property of ideal MHD that axisymmetric equilibria must have Ω a function of flux-surface
only combined with the observation that the separatrix flux surface is line-tied to a fixed
conducting material boundary and so can not rotate. In reality, the complex and strong radial



electric fields found in the H-mode pedestal may well alter the boundary condition from that
of simple ideal MHD considerations[19]. Observation of rotation in Ohmic H-modes are
consistent with this picture.

Since the principal contribution to the integral for Ω is expected to come from a thin layer
whose thickness scales with the gyroradius, this integral will be rescaled by a factor v-1,
where v = (2E/M)1/2(Raωci)-1. We also introduce T* via  T = NT*v , where  N  is the rate at
which is the rate at which the plasma heating is supplying energetic particles of energy E so
the fast-wave heating power  P = NE . T* has the interpretation of being the angular
momentum transferred from an average energetic particle to the bulk plasma inside flux
surface Φ in units of (2EM)1/2Ra . Thus, the expression for the rotation rate becomes

     

  Ω(Φ) – Ω(Φmax)
N

= v2

2(2π)2 nχo

In
*(Φ)

       

  
In

*(Φ) = 1
v

dΦ′
Φ′qn T*(Φ′)

Φ

Φmax

(9)

Numerical results reported below will confirm that, with this scaling, I* is insensitive to
particle energy.

6. ORBIT Calculations of Integrated Torque

Equation (9) reduces our problem to the calculation angular momentum driven in the bulk
plasma by the ensemble average of individual particles. The complex evolution of particle
orbits, with pitch angle scattering transforming orbits from trapped to passing and back again,
suggests the use of a Monte-Carlo method. The ORBIT code [14,15], which follows particle
banana and passing orbits and their evolution by collisions [18], while strictly conserving
angular momentum, has been adapted to this problem.

The ORBIT code follows an ensemble of Monte-Carlo particles with the initial condition as
specified in the preceding paragraph as their orbits evolve under the influence of collisions.
The collision model is ion-ion pitch angle scattering and energy drag of minority ions against
a cold bulk deuterium plasma and electrons, as given by

  1
E

dE
dt

= – 2νo
Eo

E

3 / 2 Mp

Md
+ 4

3 π
me

Mp

1 / 2 E3 / 2

T3 / 2
  d θ2 / dt = νo Eo / E

3 / 2
(10)

where   νo = 2π 2nee
4 nΛ Mp

– 1 / 2Eo
– 3 / 2  and Eo is the initial particle energy.

ORBIT records the angular momentum increment MR(∆v||) [in units of (2ME)1/2Ra ] received
by a Monte-Carlo particle in each collision event as well as the magnetic surface on which the
collision took place. An equal but opposite angular momentum increment is then accumulated
in one of the 10,000 computational bins in toroidal flux corresponding to the magnetic surface
where the collision occurred. From this data one forms T2

* ∫0
Φ MR∆v

||
dΦ , which is the Monte-

Carlo ensemble average angular momentum impulse imparted to the bulk plasma within flux
surface Φ by collisions with energetic particles.

Torque also arises from the radial currents which result when a particle comes to rest on a
magnetic surface which differs from their originating one. It is straight forward to show that
the total torque δT exerted on a shell of thickness δψ in poloidal flux is given by the radial
current Ir . The radial current is determined in turn by the fraction of particles which come to
rest inside a given magnetic surface. For each Monte Carlo particle, the ORBIT code records
the initial magnetic flux surface Φo and its final position is assigned to one of the bins. From
this data one can form

  
  

T1
* = 1

v
dΦ′

q G(Φ′)
0

Φ

       
  

G Φ =
F(Φ) Φ < Φo

1 – F(Φ) Φ > Φo
(11)

and F(Φ) is the average number of particles whose final position is inside surface Φ. T1* is
the angular momentum given to the bulk plasma by a single ensemble-average particle



through RjrBθ torques [in units of (2ME)1/2Ra] . The discontinuity in G(Φ) arises from
subtraction of a cold bulk particle in the initial conditions.

Lastly, when particles are lost from the plasma, they carry with them their mechanical angular
momentum which is accumulated as T3*. At the plasma surface the total integrated torque
T1* + T2* T3* is evaluated and found to vanish with a relative accuracy of 2·10-3 or better.
Thus, our physics and computational scheme does not introduce any angular momentum.

This completes our formalism. Monte Carlo runs determine F(Φ), T1*(Φ), T2*(Φ), and finally
I*(Φ). Because our final expression involves two integrations over the distributions in
computational bins, the results are very insensitive to the number of bins and adequate
accuracy results from 1000 Monte Carlo particles per run.

7. Results

Non-dimensional rotation integrals I2* for a scan of resonance surface locations are presented
for a circular tokamak model for Alcator C-Mod, based on ion-cyclotron Model 1 which starts
particles at an energy of 48 keV with their banana tips on the cyclotron resonance surface in
the intense wave region. The magnetic axis lies at Rc =  67 cm and qmax = 4.0. Calculations
done with an initial energy of 24 keV and with different initial pitch confirmed insensitivity to
input parameters except resonance location. Fig. 2 displays the results. One notes the
following features: The magnitude of the central rotation is |I2*| = 5-10. The rotation profiles
are small outside the cyclotron resonance surface (except for R=51 which had appreciable lost
particles). And, the sense of rotation changes from co-current to counter-current as the
resonance surface passes through the magnetic axis.

Ion cyclotron Model 2, with perpendicular energy diffusion, has a potential for bias arising
from its initial conditions. This arises from the results of calculations in which starting
energetic particles in pairs of equal but opposite parallel velocity resulted in driving a rotation.
Although contributions from a range of major radius values produce an approximate
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FIG. 2. Nondimensional rotation profiles I2
* for ICRF model

1.1 versus square root of normalized toroidal flux for various
values of the major radius of cyclotron resonance surface.
Magnetic axis is R = 67 cm.

cancellation, a residual rotation
remains. Consequently, we
compute the difference between
rotation  profiles of a reference
case without ICRF heating and a
case with the same initial
conditions, but with ICRF. We
then form

 J2
* =

Eo

EICRF – Eo
I2

*
ICRF – I2

*
Ref

(12)

which gives the incremental
rotation normalized by the incre-
mental energy, which is the dif-
ference between the starting
energy and the total average
energy transferred by a particle
to the bulk plasma. Fig. 3 pre-
sents results for an initial energy
of 10 keV and c⊥ = 1.0, which
resulted in a modest increase of
particle energy due to ICRF
heating. It is evident that these
two models produce effectively
equivalent rotation profiles.
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FIG. 3. Nondimensional Rotation profiles J2
* for ion-cyclotron

model 2 with the major radius of cyclotron resonance layer as
a parameter.

Figure 4 presents the inte-
grated torque profiles T1* and
T2* for R=71 cm. It is evident
that the co-current torque by
collisional mechanical angu-
lar momentum transfer is
what generates the co-current
rotation. This plot attests to
the accuracy of the ORBIT
code in attaining zero inte-
grated torque at the plasma
boundary.

Putting the results into dimen-
sional form, the rotational
profile takes the form
Ω − Ωboundary

= 4qmax W

eBR3a2ne (2π)2
τM

τE







I2
*

(13)

where W denotes plasma en-
ergy content. Based on I2*≈8
and ne=3·1020m-3, Eq. (13  )
gives a central rotation rate

 of 110 krad/s, the observed rate in Alcator C-Mod, for the no-slip boundary condition
Ωboundary = 0.

Lets us also note that off-axis resonance locations (cf., R=59 cm and 75 cm) produce layers of
high velocity shear that are strongly localized. The velocity shear values are roughly 8·105Hz
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for C-Mod parameters, are
comparable to drift wave fre-
quencies (less than 106 Hz),
and therefore should be effec-
tive at stabilizing drift waves
and producing internal trans-
port barriers.

8. Conclusion

Overall, we can conclude that
a physics basis exists for ICRF
heating to be an effective free
energy source which creates
torque densities that can gen-
erate rotation and velocity
shear, when coupled with dif-
fusive transport of angular mo-
mentum. Quantitative agree-
ment is obtained between
theory and experiment. A key
prediction is the changing the
sense of plasma rotation
depending on the location of



cyclotron resonance surface. The surface boundary condition remains a source of uncertainty.
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