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Abstract: We present experimental and theoretical investigations on the dynamics of coherent

magnetic islands in high temperature, magnetically con�ned plasmas of thermonuclear interest,

and of their e�ects on plasma transport.

1. Diamagnetic rotation of magnetic islands

Often, the con�nement properties of tokamak plasmas are limited by the onset of
macroscopic, coherent magnetic islands. The quali�cation coherent refers to single-helicity
islands where chaotic �eld line behavior does not play an important role. Typically,
coherent islands correspond to magnetic perturbations with low poloidal mode numbers,
such as neoclassical tearing modes and m = 1 resistive kinks. The nonlinear evolution of
these islands is still an open problem.

Diamagnetic e�ects are known to in
uence signi�cantly the reconnecting magnetic
instabilities. The important changes to the classic resistive tearing mode occur in the so
called drift-tearing regime [1], when the electron diamagnetic frequency !�e is suÆciently
larger than the (normalized) growth rate, 
T = 0:55(�0)4=5�3=5, obtained by the RRMHD
model, which ignores the equilibrium pressure gradients. For values of !�e=
T exceeding
a critical threshold, the eigenfunction undergoes a transition to a radially oscillating,
delocalized mode. One can construct an initially localized wavepacket, which propagates
outwards undergoing spatial ampli�cation. Furthermore, the nominal mode growth rate,
which is obtained from the dispersion relation ignoring the localization problem, is strongly
suppressed at high !�e=
T . A localized mode can be found when additional physics is
included in the models. An important localizing non-dissipative e�ect, which can lead
to the complete stabilization of the drift-tearing mode, is the �nite � coupling to sound
waves [2]. Localization is also achieved by the introduction of appropriate dissipative
e�ects. The roles of two such e�ects, the ion viscosity and the particle di�usivity, are
discussed in this Section.

Diamagnetic e�ects are altered in the nonlinear regime, as density and temperature
pro�les tend to 
atten, on average, across the island region. This leads to two main
questions: (i) To what extent the stabilizing diamagnetic e�ects are suppressed in the
nonlinear saturated regime; (ii) What are the actual mode structure and rotation fre-
quency of saturated islands. These questions are especially relevant when treating more
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Figure 1: Perturbed current density. (a) Non-localized structure, P=D=0; (b) Viscosity
localization, P = 0:1, D = 0; (c) Di�usivity localization, D = 0:01�, P = 0.

general models that predict full linear stability as in Ref. [2], when one can argue that
the nonlinear suppression of the diamagnetic e�ects could lead to bistability, that is, the
coexistence of states with and without magnetic islands for the same set of parameters.

In order to address these issues, we consider the three-�eld nonlinear version of the
model of Ref. [1], with the inclusion of ion viscosity and particle di�usivity. The cold
ion limit is taken for simplicity and the electron temperature is constant. The (suitably
normalized) vorticity equation is

dU=dt = [J;  ] + �r2U (1)

where � is the electric potential, U = r2� the vorticity,  is the magnetic 
ux function and
J = �r2 is the current density; [A;B] � (@xA)(@yB)�(@xB)(@yA), d=dt � @=@t+[�; �],
and � is viscosity. The Prandtl number is P = �=�. We adopt the Ohm law

d =dt+ v�@y = [n;  ]� � (J � Jeq) ; (2)

where v� is proportional to the equilibrium density gradient, while the 
uctuating density,
n, obeys the continuity equation

dn=dt+ v�@y� = Dr2n; (3)

with D the particle di�usivity. These equations are de�ned in a box [�Lx; Lx]� [�Ly; Ly],
with aspect ratio � = Lx=Ly and periodic boundary conditions. The system is driven by
the equilibrium current density, Jeq(x) = cos(x) (having set Lx = �). Following standard
techniques, we de�ne the tearing mode stability parameter, �0. For the considered equilib-
rium, �0 = 2� tan ��=2, where � =

p
1�m2�2 andm is an integer. Tearing perturbations

� = �L(x)e
ikyy, with ky = m�, are linearly unstable when � < 1 (�0 > 0).

The linearized system can be solved analytically. For reason of brevity, we omit the
analytic derivation and present only a brief summary of the main interesting regimes.

P = D = 0: The tearing mode growth rate, 
 = 
T , is obtained when also !�e =
kyv� = 0. For suÆciently large values of !�e=
T , the mode becomes delocalized. Fig. 1a
shows an example of what happens to the perturbed current density during the initial
growth of the instability for � = 1:� 10�4, �0 = 0:71 and !�e=
T = 3.

P 6= 0: For nonzero values of the Prandtl number, a turning point is introduced in
space, beyond which the eigenfunction decays exponentially to zero. When !�e=
T > 1

and � > !
7=3�e (�0)�2=3, a new scaling for the growth rate is found, 
 � �06=5�4=5!

�1=5�e P�1=5.
An example of the eigenfunction for P = 0:1, � = 1:� 10�4, �0 = 0:71 and !�e=
T = 3 is
shown in Fig. 1b. The mode is now localised with radial oscillations.
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Figure 2: Nonlinear evolution. Top
panel: magnetic signal. Bottom
panel: rotation frequency.
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Figure 3: Mean �elds, density and
potential, for D = 5: � 10�5 (solid)
and D = 2:5� 10�5 (dashed)

D 6= 0: The most striking e�ect on the mode structure is found for nonzero values
of the di�usivity parameter. At D=� � 10�2, the mode structure is localized even for
P = 0, in addition the radial oscillations are wiped out completely. The e�ect on the
mode growth rate is negligible, as can be shown analytically. An example of the numerical
solution is shown in Fig. 1c, for � = 10�4, �0 = 0:405, !�e=
T = 3 and D = 5:� 10�6.

We also present preliminary nonlinear studies of Eqs. (1)-(3), aimed at identifying
the interesting phenomenology. Fig. 2 shows the evolution of the magnetic signal of the
dominant mode and the rotation frequency. For this run, �0 = 0:34, � = 1: � 10�3,
P = 0:2, D = 5: � 10�5 and !�e = 0:015. The mode initially grows exponentially and
rotates at the linear frequency !lin � 0:013, but then it slows down to a somewhat lower
frequency. This is accompanied by a reduction of the mean density gradient in the island
region. Density 
attening is caused by the electric �eld advection in the continuity Eq.
(3) and is counterbalanced by the di�usivity. Fig. 2 also shows that when the di�usivity
is reduced to D = 2:5 � 10�5, as we do at time t = 20, the frequency further drops.
Fig. 3 shows the pro�les of the mean �elds for two values of di�usivity. We also �nd
that the amplitude of the saturated island is only weakly a�ected by the diamagnetic
frequency, being about 10% less than the amplitude obtained with the RRMHD model
for the corresponding value of �0.

Neo-classical tearing modes can be destabilized in weakly collisional toroidal plasmas,
as a consequence of the local reduction of the bootstrap current within a magnetic island
of �nite width in an otherwise stable equilibrium with �0 < 0 [3]. The local current
reduction follows the quasi-linear pressure 
attening within the island region. While the
proposed theoretical models appear to be in qualitative agreement with experimental
observations [4], nonlinear diamagnetic e�ects, which as argued in the previous Section
are expected to play an important role, have not been properly included in the models.
Furthermore, the critical threshold, in terms of the initial seed island for the onset of
these modes, is still an open question [5].

The dynamics of coupled rotating magnetic islands associated with ERCH can be
interpreted on the basis of nonlinear model equations, given in detail in Ref. [6], which



describe the interaction of the island inertia with the resistive wall braking torque and
the electro-dynamic coupling of the mode side-bands. Coupling can have a stabilizing or
destabilizing e�ect, depending on the phase di�erence, ��, which evolves non-linearly in
a pendulum-like fashion. During an ECRH pulse in FTU, e.g. shot #14979 shown in Fig.
4 of Ref. [6], the m=n =1/1 and m=n = 2/1 magnetic islands initially rotate at a common
frequency controlled by the larger of the two islands. This frequency is occasionally seen
to jump between the natural frequencies, which, in the plasma rest frame, are related to
the electron diamagnetic frequencies at the corresponding mode-rationale surfaces. The
frequency jump is the result of the competition between the mutual torques associated
with the two islands, viscous drag and wall braking.

2. Sawteeth and core plasma transport

Sawtooth crashes are triggered by internal m=1 kink modes [7] when q < 1. Non-
ideal MHD considerations are necessary in order to understand the actual threshold for
the sawtooth crash and the resulting sawtooth period and amplitude. The instability
condition can be written as [8] ÆW < ÆWcrit, where ÆW = ÆWmhd + ÆWKO + ÆWfast is
an e�ective potential energy functional, with ÆWmhd the ideal MHD part [9], ÆWKO the
part contributed by the thermal trapped ions [10], ÆWfast the fast particle contribution
[11] and ÆWcrit is a critical threshold determined by microscopic e�ects (i.e. electron-
ion collisions, ion Larmor radius, electron skin depth, diamagnetic frequency, etc.) in a
narrow reconnection layer around the q = 1 surface. Detailed expressions for ÆW and
ÆWcrit can be found in Ref. [8].

Besides fast ions, an important ingredient associated with the stability criterion is
the local magnetic shear. For most tokamak discharges of interest today, including TCV
and FTU, the relevant layer physics corresponds to the so-called ion-kinetic regime [12],
where electron-ion collisions, the ion Larmor radius and diamagnetic e�ects are impor-
tant. Under these circumstances, the instability condition is equivalent to max(
�; 
�) >
c�(!�e!�i)

1=2, where 
� and 
� are the ion-kinetic and resistive kink growth rates, respec-
tively, c� is a numerical factor of order unity and the diamagnetic frequencies are evaluated
at r1. This condition can be recast in terms of a critical magnetic shear condition for the
local parameter s1 = r1q

0(r1). For the case 
� > 
�:

s1 > s1;crit = c7=6
�

[�Ti=2(Ti + Te)]
1=3 �

7=6
A (!�e!�i)

7=12(r1=�i)
2=3S1=6; (4)

where �A is the relevant Alfven time, �i is the ion Larmor radius and S is the magnetic
Reynolds number. A numerical model for sawteeth can be implemented in transport
codes, such as PRETOR, based on the following rules. During simulated sawtooth ramps,
stability parameters are monitored; when condition (4) is satis�ed, a sawtooth crash is
triggered, the q pro�le is relaxed following, for instance, Kadomtsev's full reconnection
prescription [7] or a partial reconnection rule, and density and temperature pro�les are
relaxed accordingly. In this way, repetitive sawteeth can be simulated.

Sensitivity to local magnetic shear was tested in JET discharges with fast wave cur-
rent drive, where phasing of the ICRH antennas led to lengthening or shortening of the
sawtooth period, depending on the sign of the driven current, when the resonant absorp-
tion layer was close to the q = 1 radius [13]. Similarly, various experiments performed on
TCV have highlighted the strong sensitivity of the sawtooth period on ECH and ECCD
operation conditions [14]. In Fig. 6, we present a PRETOR sawtooth simulation a ded-
icated experiment, showing the in
uence of even small amounts of current drive close to
the q = 1 surface [15]. Two shots with identical plasma conditions have been produced:
in one case, shot ]15278, the ECH power is accompanied by CNTR-CD, less than 1% of
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Figure 4: Sawtooth simulations.

the plasma current; in the second case, shot ]15282, the same amount of CO-CD is used.
The sawtooth period changes experimentally from 7 to 11 ms. The simulated sawtooth
periods reproduce the observed trends. As the ECH power deposition is nearly the same
in the two cases, the simulated critical shear as function of time is similar for the two dis-
charges. On the contrary, a small amount of CD, well localized close to the q = 1 surface,
changes the evolution of the magnetic shear at q = 1, i.e., s1 increases more quickly after
a crash with CNTR-CD and more slowly with CO-CD. Thus, the simulated sawtooth is
longer with CO-CD, in very good agreement with the experimental data. FTU sawtooth
simulations also show good agreement with experimental results [16], as can be seen in
Figs. 4b and 4c.

In a separate development, a numerical code (M1TEV) which solves the thermal energy
di�usion equation during localized ECRH heating and the growth of an m/n=1 magnetic
island, has been applied to the interpretation of temperature �laments in RTP and TEXT-
U and nonstandard sawtooth relaxation oscillations in TCV and FTU, see refs. [17, 19, 18].

3. Collisionless magnetic reconnection

Magnetic reconnection in collisionless plasmas was originally motivated by applications
to space plasma processes, such as reconnection events occurring in the Earth magneto-
tail. Renewed interest in this problem was prompted by the observation of fast sawtooth
relaxations in JET. Wesson [20], using a semi-heuristic argument a la Sweet-Parker, was
the �rst to point out that electron inertia may give short crash times. More detailed an-
alytic and numerical work [21, 22, 23] showed that: (i) The actual fast reconnection time
scale in JET relevant regimes, �rec, is determined by a combination of the electron skin
depth, de, and the ion (sound) gyroradius, �s, namely �rec � �Ar1=(de�

2
s)

1=3, which gives
values of �rec close to the observed �crash � 50�s for JET parameters; (ii) The structure of
the collisionless reconnection region is very di�erent from that associated with the classic,



collisional Sweet-Parker process.
An appropriate model for collisionless reconnection is Eq. (1), with � = 0, and the

collisionless version of Ohm's law,

@F

@t
+ ['; F ] = �2s[U;  ]; (5)

where F =  +d2eJ is the velocity-space-averaged canonical momentum along the ignorable
z-direction. The term proportional to �2s represents electron compressional e�ects, which
are important insofar as �s > de. Eqs. (1) and (5), together with U = r2� and J =
�r2 , are a closed set. In Refs. [22, 23], these equations were solved in a planar slab
subject to double periodic boundary conditions. Choosing a slab aspect ratio � = 0:5 and
values of de and �s such that �0de > (de=�s)

1=3, a quasi-explosive nonlinear growth was
found on the time scale �rec indicated above, although the adopted boundary conditions
limited the interesting nonlinear phase to island widths smaller than the box size (see
also Ref. [24]). More recently, we have solved the same set of equations removing the
double periodic boundary conditions. We have adopted a Harris pinch equilibrium, Beq =
B0ez+Byeq(x)ey, where Byeq(x) = tanh(x=L) and L is the equilibrium scale length. This
equilibrium is unstable to tearing perturbations, periodic in y over the distance Ly, when
L < �Ly. In the x direction, we impose the �elds � and  �  eq to vanish at in�nity.
The linear (small perturbation) phase can be solved analytically. In the limit �0 ! 1,
the linear growth rate [21] 
L�A � (2de�

2
s=�)

1=3=r1 is recovered. With the Harris-pinch
con�guration, a single coherent magnetic island can be followed in time, until its width
saturates at a macroscopic amplitude. Numerical results con�rm that the magnetic island
grows to a macroscopic amplitude in a quasi-explosive manner and approaches saturation
on the time scale �rec � 
�1

L .
The collisionless model we have adopted admits two families of topologically invariant

�elds:
G� = F � de%sU: (6)

Equations (1) and (5) can be written as

@G�

@t
+ ['�; G�] = 0; (7)

where '� = '� (%s=de) . The energy functional playing the role of the system Hamilto-
nian [25] is H = �(1=2) R d2x('+G+ + '�G�): Eq. (7) expresses the Lagrangian conser-
vation of the �elds G�, advected by the generalized 
ows v� = ez � r'�. Clearly, any
function of G� is also a conserved �eld. We have shown in Ref. [23] that the existence
of these topological invariants is responsible for the structure of the reconnection region,
in particular the cross-shaped structure of the current density and vorticity layers and
the generation of microscales below the electron skin depth. A more general question of
principle that we address here is how to reconcile the reversible energy transport to small
scales implied by the dissipationless evolution, with the seemingly irreversible approach
to a saturated equilibrium with a macroscopic magnetic island.

The resolution of this apparent paradox [26] is spatial phase mixing of the Lagrangian
invariants, i.e. the functions G� develop �ne scale oscillations as they are advected by
vortical patterns corresponding to the velocity �elds v�, while the functions � and  ,
that can be expressed through integrals of G�, turn out to be smooth. This process can
be more easily understood in terms of a formal analogy with the standard Vlasov-Poisson
problem for electrostatic Langmuir waves. The set of Eqs. (7) has the form of two coupled
1D Vlasov equations, with x and y playing the role of the coordinate and the conjugate



momentum for the "distribution functions"G� of two "particle" species with equal charges
in the Poisson-like equation, de�sr2� = (G+�G�)=2, and opposite charges in the Yukawa-
type equation,  � d2er2 = (G+ + G�)=2. The generalized stream functions �� play
the role of the single particle Hamiltonians. Thus, similarly to Bernstein-Green-Kruskal
[27] solutions, the stationary solutions can be written in the form G� = G(��) (there is
a single function G because of the symmetry relation G+(�x; y) = G�(x; y)). However,
the present problem and the standard Vlasov-Poisson problem are not formally identical.
In Poisson's equation, the source term is the electron density, which is the velocity space
integral of the distribution function and as such does not exhibit �ne scale oscillations.
In our problem, the source terms for the Poisson-type and Yukawa-type equations are the
distribution functions G� themselves. On the other hand, the �elds � and  solutions
of these equations can be expressed in terms of integrals of G�. Therefore, the �ne scale
structure of G� does not show up in � and  . We conclude that phase mixing of the
Lagrangian invariants can allow the plasma to access a new \macroscopic" stationary
state, similar to the formation of macroscopic BGK equilibria [27], without violating
energy conservation. Indeed, separating the Lagrangian invariants into coarse-grained
and phase-mixed parts, the latter are contributed by small scale �laments and have zero
space average. Therefore, one �nds the contributions of the phase-mixed parts of  and
' to be negligibly small, as  and ' are obtained from G� upon spatial integration.
On the other hand, these small scale structures continue to contribute to total energy
conservation through the quadratic d2eJ

2 and %2sU
2 terms in the energy integral H.

4. Conclusions

We have presented recent advances on the understanding of macroscopic island dy-
namics in magnetized plasmas, made possible by a pro�table interaction between theory
and experiments. The understanding, however, is still incomplete. The main conclusions
to date can be summarized as follows:
1) A satisfactory model for the sawtooth period and amplitude has been developed and
validated against TCV and FTU experiments. The model points to the importance of
diamagnetic e�ects, which introduce a threshold for the trigger of the sawtooth crash
in terms of a critical value of the local magnetic shear parameter. Localized current
drive can in
uence the time evolution of the local magnetic shear and thus represents
an e�ective means for sawtooth control. The model also includes the stabilizing e�ects
of fast ions. Thus, the proposed sawtooth model is a state-of-the-art viable tool for
predicting sawtooth behavior in future experiments, and as such it has been implemented
in predictive transport codes such as PRETOR.
2) Diamagnetic e�ects are important also for the dynamics of nonlinear (neoclassical)
tearing modes, which in FTU are observed rotating at the electron diamagnetic frequency.
A nonlinear model for the dynamics of coupled rotating islands has been developed and
compared with FTU data. In another theoretical development, preliminary results on the
evolution of nonlinear drift-tearing modes, based on a reduced three �eld model, have
been presented. It is shown that density gradients in the reconnection region can be
maintained nonlinearly and give rise to island diamagnetic rotation.
3) A model for the evolution of electron temperature pro�les during sawteeth and localized
ECRH has been developed and compared against TCV and FTU data.
4) In large size tokamaks such as JET, sawtooth reconnection can occur under nearly
collisionless conditions. We have shown that nonlinear collisionless reconnection is fast
enough to account for the observed sawtooth crash time in JET. As a matter of principle,
we have also shown that growth and saturation of magnetic islands can occur in collision-



less conditions. Irreversibility in collisionless reconnection is introduced by spatial phase
mixing of conserved �elds. In this sense, magnetic island saturation has a formal analogy
with the formation of BGK equilibria for dissipationless Langmuir waves.
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