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Abstract. Analytical investigations of several linear and nonlinear features of ETG turbulence
are reported. The linear theory includes e�ects such as �nite beta induced electromagnetic
shielding, coupling to electron magnetohydrodynamic modes like whistlers etc. It is argued
that nonlinearly, turbulence and transport are dominated by radially extended modes called
`streamers'. A nonlinear mechanism generating streamers based on a modulational instability
theory of the ETG turbulence is also presented. The saturation levels of the streamers using
a Kelvin Helmholtz secondary instability mechanism are calculated and levels of the electron
thermal transport due to streamers are estimated.

1. Introduction

The physics of electron and ion heat transport in tokamaks is a problem of considerable
current interest. Experiments and simulations have convincingly demonstrated that
ion heat transport is dominated by the ion temperature gradient (ITG) instability.
Excellent ion con�nement (comparable to neoclassical predictions) has been observed
in negative central shear plasmas where the ITG mode is stabilized by a combination
of strong velocity shear and reverse magnetic shear and an internal transport barrier
(ITB) is formed [1]. A comparable improvement of electron heat transport is typically
not observed in ITB plasmas. It is only in cases of strong negative magnetic shear that
some improvement of electron heat transport is seen [1]. It thus seems likely that electron
heat transport is determined by short scale 
uctuations (k?�i � 1, �i being the ion
Larmor radius) which do not in
uence ion heat transport, are una�ected by magnitudes
of velocity shear which stabilize the ITG mode (i.e., growth rate 
 > 
ITG � !E�B), and
are stabilized by strong negative magnetic shear. A mode which has all these features
is the electron temperature gradient mode (ETG) driven by �eld line curvature e�ects.
The linear and nonlinear theories of this mode are thus of considerable interest and form
the subject of the current paper.

The possible relevance of electrostatic ETG modes to electron heat transport in tokamaks
was investigated by several authors [2]. It was shown that when �e = d lnTe=d lnn exceeds
exceeds a critical value, short-scale (�e � �? � �i) fast growing (
 � j!j � ce=(LTR)

1=2,
ce is the electron thermal speed and LT , R are the temperature and curvature scale
lengths) electrostatic modes are excited. These modes typically leave the ion transport
una�ected and give a quasilinear mixing length estimate of electron thermal conductivity
�ETG � �2ece=Ln; this coe�cient is however, too small to explain the observations.
Ohkawa [3] pointed out that inclusion of electromagnetic e�ects may enhance the
transport to �e � (c2=!2

pe)(ce=qR) which is closer to empirical observations. Detailed
calculations for ETG modes with electromagnetic e�ects were carried out by Guzdar
[4], Horton [2] and made attempts to justify Ohkawa's phenomenological estimates
again using quasi linear mixing length arguments. These attempts were however, not
very convincing. More recently [5, 6] it has been argued on the basis of particle and




uid simulations that temperature gradient driven modes are nonlinearly dominated by
radially extended nonlinear perturbations called `streamers'. These streamers saturate
by a secondary Kelvin Helmholtz (K-H) like instability mechanism [7] and can lead to
transport values much larger than the mixing length estimates.

In this paper we have analytically re-examined aspects of linear and nonlinear features
of the ETG instabilities. Starting with the Braginskii 
uid equations, we �rst look at the
linear theory of these instabilities taking account of coupling to magnetic 
utter pertur-
bations (B? e�ects) as well as to compressible magnetic perturbations (Bk e�ects). We
�nd that coupling to 
utter perturbations is stabilizing for the ETG mode. We also con-
sider the unexplored case of 
=kvi > 1, when the ETG mode directly couples to whistler
like perturbations (because ion response is negligible). In this limit, conditions for elec-
tron magnetohydrodynamic (EMHD) ballooning instabilties which arise when curvature
e�ects overcome the restoring forces due to EMHD e�ects are derived. We next argue
from general considerations that nonlinear ETG structures should be dominated by radi-
ally extended streamers. The generation of such streamer like states from a homogeneous
isotropic turbulent state through a modulational instability mechanism is examined by
a kinetic wave equation treatment. To estimate the saturated level of streamer like per-
turbation we carry out a secondary K-H instability analysis of such structures. Since the
primary streamer structures are periodic in space, their secondary instability theory can
be carried out by using a Floquet type analysis. Using such techniques, we estimate the
growth rates of secondary instabilities. It is argued that the primary streamer instability
will saturate when the growth rate of the secondary instability matches that of the pri-
mary instability. This allows us to estimate the saturation level of streamers as well as
the magnitude of transport due to them.

2. Basic Equations

The ETG modes satisfy the following frequency and wavelength restrictions :

i � ! � !� � 
e, kci > ! > kkce, �i � �? � �e. Here 
j are the respective

cyclotron frequencies, �j = cj=
j the Larmor radii and cj =
p
Tj=mj the thermal veloc-

ities. !� � k��ece=Ln is the diamagnetic drift frequency and other relevant parameters
are !�T = �e!�, !�p = (1+ �e)!�, �e = Ln=LTe , !de = �n!�, �n = 2Ln=R, Ln, LT , R being
respectively, the density, temperature and curvature scale-lengths typically satisfying the
condition R > Ln > LT .

Our chief objective is to present a set of equations which takes account of the coupling of
the ETG modes to the perpendicular and parallel magnetic �eld perturbations (�B?; �Bk).
We shall use the reduced Braginskii 2-
uid equations to derive a set of model equations
for the ETG mode in the hydrodynamic approximation. Under the conditions outlined
above (! � 
i; k?�i � 1; ! < kvi), ions are an unmagnetized species and satisfy the
Boltzmann condition ~ni = �� ~� ' ~ne, where ~nj = �nj=n0j, � = Te=Ti, ~� = e��=Te and
the last approximate equality follows from requirement of quasi-neutrality. For very short
scales such that k?�De � 1, we may consider deviations from quasi-neutrality, in which
case, we will write ~ni = �� ~� = ~ne��Dr2 ~�. The 
uid model for electrons is analogous to
the one used for ions in the ITG mode [9] and consists of the electron continuity equation,
parallel equation of motion and the temperature equation coupled with expressions for



perpendicular drifts of the electron 
uid. These drifts may be written as
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where in addition to the well known �E � �B, diamagnetic and polarization drifts (mod-
i�ed by �Bk e�ects) we have included the last term which is a perpendicular drift due
to magnetic 
utter perturbations. Note that d=dt = @=@t + �vE � �r and in writing the
polarization drift term, we have used the well known cancellation between the convective
diamagnetic contributions and drifts due to stress tensor. Using Eq. (1) to eliminate ~ne
and the de�nition ~vek ' � ~Jk=en0 = (c2ec=!

2

p)r2

?
~Ak (where, ion parallel response currents

are negligible because of Boltzmann equilibration and ~Ak = eAk=T is the normalized
parallel component of vector potential) to eliminate ~vek, we get the normalized equations
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where [a; b] = (@xa@yb� @xb@ya) is the Poisson bracket typical of convection, and other

uid plasma nonlinearities, x and y are normalized to �e, z to Ln (x, y, z being respec-
tively, the radial, poloidal and toroidal coordinates), we have de�ned normalized variables�
~�; ~n; ~T ; � ~Bk

�
= Ln=�e

�
e��=Te0; �n=n0; �Te=Te0; �Bk=B

�
, ~Ak = (2ceLn=�ec�e)eAk=Te0,

~pe = ~n+ ~Te, �e = 8�nTe=B
2

0
. Note that as in the standard ballooning formalism, we may

interpret (in the linear approximation), r2

?f = �k2?f = �k2�f
�
1 + (s�̂ � � sin �̂)2

�
; ~�n =

�n [cos � + (s� � � sin �) sin �], rkf = ikkf ' (1=qR) (@f=@�) where � is the extended
coordinate in the ballooning formalism, q � rB�=RB� is the safety factor, r and
R are the minor and major radius of the machine, B� and B� are the poloidal
and toroidal magnetic �elds, s = rd ln q=dr is the magnetic shear parameter, � =
(2�eq

2=�n) (1 + �e + (1 + �i) =�) is the Shafranov shift. The above equations are to be
supplemented with an equation for �Bk = (r� A) � êk related to �A?, the perpen-
dicular component of vector potential satisfying the equation r2

?
�A? = � (4�=c) �J? =

(4�en0=c)
�
~vE + ~v�p

�
. For kk < k?, this equation may be written as � ~Bk = �e

�
~pe � ~�

�
=2.

Note that in this approximation � ~Bk does not have an evolution equation and that our
equation is a 
uid analogue of Eq. (6) of Jenko [6].

3. Linear Theory

We use a semi-local theory for obtaining the eigenvalue solutions of above coupled Eqs.
(2)-(4) with � ~Bk = 0. For that we take a strongly ballooning function of the form ~f(�) =

(1 + cos �) ~f=
p
3�; � < �, and substituting rk = �ihkki, r2

? = �hk2?i, and ~�n = h�ni
in Eqs. (2)-(4), where h� � �i =

R
2�

0
(f � � � � f)d�= R 2�

0
jf j2d� denotes an average over the



eigenfunction [8], the linear semi-local dispersion relation can be obtained as
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where, �! = ! � (1 + �e) ky, hk2ki = �2n=12q
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, and ~pe � (�!=!) ~� is assumed in the parallel compression term

of Eq. (3). The Eq. (5) contains both the slab and toroidal version of electromagnetic
ETG mode. The slab branch of ETG mode has been studied extensively earlier by
various authors. Here, we discuss the toroidal ETG mode in semi-local limits. In
the ballooning limit k2� > �T=2q, the parallel compression term on the r.h.s of Eq.
(5) can be treated perturbatively. Eq. (5) to the leading order gives the growth rate


0 ' k� (�n=�)
1=2 (�e � �th)

1=2 where, �th = 2=3� 1=2� + 1=4�n� + �n (1=4� + 10�=9) and
the terms proportional to k2��

2

e are neglected. Including the r.h.s perturbatively we �nd
that the parallel electron motion and electromagnetic shielding to Ek results in a shift in
real frequency and stabilizing contribution to the growth of the mode.

We now discuss the numerical solutions of the toroidal branch of ETG mode in local
limit (� = 0), neglecting parallel electron motion (with kk = 0). We benchmark the 
uid
model by comparisions with the gyrokinetic results of Horton et al. Figure (a) gives the
plot of 
 versus �e for three di�erent values of k� = 0:1; 0:3; 0:5, and in Fig. (b) the plot
of 
 versus Ln=R is displayed with �e = 1.5, 2, and 2.5, (the other plasma parameters are
�n = 0:3, � = 1). Note that the gyrokinetic results of Horton et al (see their Figs. 4 and
5) are reproduced with the 
uid theory. The dependence on s and �(�e) is shown in Figs.
(c) and (d). The growth rate versus k� from the full semi-local dispersion relations are
illustrated. For s = 1, q = 1:4, low �e = 0.01, Ln=R = 0:1, and Ln=R = 0:3, the growth
is found to reach a maximum around k� = 0:6, and complete stabilization of the mode
occurs for k� < 0:9. However, the model includes only �rst order FLR e�ects and is not
accurate in this regime. Note that for Ln=R = 0:1 and high value of �e such as 0.05, and
0.08, the growth of the mode is reduced to a low value. For Ln=R = 0:3, similar reduction
in the growth rate of ETG mode is observed at very large value of �e � 0:08. Thus
magnetic 
utter e�ects which are important at high �e produce a stabilizing in
uence on
the ETG mode.

We have also investigated the dispersion relation in the limit j!j > kvi, taking account
of coupling to � ~Bk, � ~B? perturbations. This is the limit in which the density response is

negligible (~ni ! 0, ~ne � k2�2

D
~� � ~�) and the ETG instability gets coupled to EMHD

physics and the whistler mode. For �e � 1, the local dispersion relation takes the form
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For !�T ! 0, this gives the whistler wave dispersion relation ! = kkk�s
e=(1 + k2?�
2

s),
which in the electrostatic limit k?�s � 1 reduces to the mode ! = 
ekk=k. For k

2
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2
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and !�T 6= 0, we get the EMHD ballooning instability
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giving a threshold condition LT=q
2R � �T =q

2 < c2e=c
2 and a typical growth rate �

(2!d!�T=�)
1=2 � cecky=!p

p
RLT � ce=

p
RLT . The condition for neglect of ion response

requires 
 > kvi or (c=!pi)(1=
p
RLT ) > 1 which requires strong temperature gradients. In

the electrostatic limit, the threshold condition is �T=q
2 < k2�2e and the 
 > kvi condition

takes the form (c=!pi)(1=
p
RLT ) > kc=!pe � 1.

4. Streamer Physics

In this section we elucidate several aspects of streamer physics relevant to the ETG
mode. Eqs. (2)-(4) show that if @=@x = 0, all nonlinear terms vanish. Thus, such
modes will grow inde�nitely, as predicted by the linear theory. This indicates that
modes with large radial extent may grow to large values. A similar result may be
inferred from a scaling transformation analysis of Eqs. (2)-(4). For simplicity, we
restrict our attention to electrostatic perturbations in which e�ects due to parallel
and perpendicular compression e�ects are neglected. We thus look at Eqs. (2) and
(4) only, take Ak ! 0 and also ignore the polarization drift nonlinearities. The only
nonlinearity retained is then the convection nonlinearity in the T equation. The resulting
equations can be shown to be invariant under the following scale transformations :
x ! ax; y ! by; ; z ! cz; t ! bt; � ! a�; T ! aT . The amplitude at
saturation thus linearly scales with the x scale. This shows that modes with larger
radial extent will have larger saturation amplitudes. We may thus form large amplitude
anisotropic eddies in the xy plane with a qy � qx where �q is the wave-vector for streamers.
Such eddies will be called `streamers'.

We now carry out a modulational instability analysis [10] which shows that homogeneous
isotropic turbulence of ETG modes is unstable to the formation of streamers. A wave
kinetic description is used to describe the background short scale ETG turbulence; the
basic variable describing these waves is the action density Nk = Ek=j!rj ' "0j�kj2=j!rj,
where !r ' (ky=2) (13�n=3� 1) and "0 = � + k2? + �ek

2

y=j!rj + 2kkk
2

?=�ej!rj and we
have used the linearized expressions from ETG theory to express the energy density in
potential, temperature and electromagnetic �eld 
uctuations in terms of j�kj2. The wave
kinetic equation may be written as

@tNk + �vg � �rNk �rr

�
! + �k � �vE

� � rkNk = 
kNk ��!kN
2

k (8)

where 
k is the linear growth rate and �!kNk is a model nonlinear damping rate account-
ing for local couplings, which in standard theory leads to the mixing length saturation
amplitude Nk0 ' 2
k=�!k. We now perturb the background turbulence with long wave
modulations (
; q) described by Eqs. (2) to (4). The perturbation in the action density
�Nk(q;
) will be driven by the slow variation of ! + �k � �vE viz,

�! + �k � ��vE = [1=2 + 13�n=6] ky@xnq + (5�n=3)(�=Ln)kyTq � kx@y�q (9)

and for qy � qx is approximately given by �Nk (q;
) = q2ykx�qRe(q;
) (@Nk0=@ky),

where Re(q;
) = 
k=
�
(
� �q � �vg)2 + 
2

k

�
. The return coupling of the fast

wave action density on the slow wave modulation equations (2)-(4) will enter
through the nonlinear coupling terms which may be identi�ed as follows :
Reynolds stress term [�;r2�] ' �q2y

P
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j!rj
"0
�Nk (q;
), Magnetic stress term�

Ak;r2Ak

� ' �q2y
P

k kxky�0

j!rj
"0
�Nk (q;
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denotes the relative contribution due to magnetic 
utter nonlinearity (magnetic stresses),
and it has been assumed that !r < 
k.

Following standard stability analysis, we may �nally write the dispersion relation for
streamers, (viz. modulations with qy � qx) as
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where �1 = �q4y
P
(1� �e�0=2)(k

2

xj!rj="0)(ky@Nk0=@ky)Re(q;
), �2 = ��eq3y(
P

kx=
k)�
(j!rj="0)(ky@Nk0=@ky)Re(q;
). For @Nk=@ky < 0, we see two simple regimes of modula-
tional instability. One is the regime where �1, the drive due to Reynolds stresses dominates
and we get from the �rst two terms of the dispersion relation 
q �= �1= (� + q2?). Note
that the inclusion of magnetic 
utter e�ects through �e�0 terms provides a stabilizing
in
uence on the modulational instability complete stabilization may result. A second
regime is one where the convection nonlinearity in the pressure equation plays the
dominant role and we have 
q �= (�n�2)

1=2.

These considerations show that modulations with qy � qx which are like radially extended
streamers will grow on the background turbulence with signi�cant growth rate. If we use
mixing length argument e�=T � 1=(qxLT ) to estimate the saturation amplitude of these
modes that tends to be a large value. It is therefore of interest to examine the conditions
under which the strong velocity shear in the streamers may lead to their breakup due to
the excitation of a secondary Kelvin Helmholtz instability. This may �x the saturation
amplitude of the streamers at a more reasonable lower value and thence provide us with a
method of estimating the anomalous transport caused by them. For simplicity, we consider
a 1-d streamer �0 cos qy which has no x dependence and consider perturbation governed
by Eqn. (5) (in which we restore n to its original form) and write

@t�n+ [�0; �n] + [��; n0] + @tr2��+
�
�0;r2��

�
+
�
��;r2�0

�
= 0 (11)

We now use the Poisson equation �r2� = n + �=� where � = �2

D=�
2
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2

e=!
2

pe and the
ion density ni is replaced by ���. The �nal equation takes the form (for � = 1)

�@t��+ (1 + �)
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Since �0 is a periodic function of y, we may use the Floquet theorem to write �� =P
n ��n sin [(ky + nq) y + kxx] e


t. Substituting in equation (12) we can get an in�nite
determinant for �nding the eigenvalue 
. When �0 is small, the determinant may be
truncated to a 3� 3 and we get the secondary K-H instability dispersion relation :
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k2xq
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(13)

Eq. (13) leads to the following conclusions. The secondary instabilities are restricted to
scale k2 � q2 and have a typical growth rate (since q2 � 1) 
KH � (1 + �)2kxkq

2�0=
p
2.



Equating this growth rate to that of the larger of modulational instability/background
ETG instability we get an estimate of the saturation amplitude of streamers : e�st=T �
(�e=LT )(1=q�e))

3.

5. Transport Estimates and Conclusions

The heat 
ux due to electrostatic ETG modes may be estimated as h~vr ~T i giving
an electron thermal conductivity coe�cient � � LT h(!�T=!)(e�=T )(iky�c=B)i '
LT j(e�=T )j2ceky�e Taking kyc�=B! � 1=kx gives a saturation amplitude e�=T � 1=kxLT

which when plugged into the above expression, gives � � �2e (ce=LT ) (since ky�e � 1). We
now wish to make an estimate of the transport due to streamers. These 
uctuations have
large amplitudes and saturate only due to K-H instabilities. The saturation amplitude
is given by e�st=T � (�e=LT )(1=q�e)

3 and leads to a thermal conductivity coe�cient
� � (ce�

2

e=LT )(1=q�e)
5. For q�e � 0:5 (note q � kmax where kmax is the wave-vector of

the maximally growing linear mode), this gives an enhancement by a factor of 64 over
the mixing length estimate. The scaling of � with parameters is di�cult to determine,
since the value of q�e where the turbulence has dominant streamers is determined by
properties of growth of background ETG turbulence and the nonlinear e�ects due to
modulational instabilities.

In conclusion we have examined certain interesting features of the ETG mode believed
to be responsible for electron thermal transport in tokamaks. We have shown that �nite
beta coupling to magnetic 
utter perturbation stabilizes the linear mode. We have
given general arguments which indicate that the turbulent transport will be dominated
by radially extended large amplitude nonlinear structures called streamers. This is
followed up with a modulational instability calculation which estimates the growth rate
of streamers. The saturation level of streamers and transport due to them is �nally
estimated from a Kelvin Helmholtz like secondary instability mechanism. It is shown
that streamer transport can readily exceed the mixing length ETG transport by one to
two orders of magnitude - thus coming close to explaining experimental observations
and recent particle simulations. In the modulational instability calculations it is shown
that magnetic 
utter nonlinearities at �nite � stabilize the modulational instability. This
suggest that at higher �, streamer transport may be less virulent, as also seen in particle
simulations.

The authors would like to thank M. Warrier and R. Goswami for useful discussions and
assistance with numerical work.
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Figs: (a) and (b)  Plot of growth rate for local (at θ=0
(c) and (d)  Plot of growth rate for full dispersion relation assuming wave

function  ( strong balooning limit ).

 ) dispersion relation.

cos θ) /φ ∼ (1+ 3 π


