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Scaling of Turbulence Suppression with velocity Shear
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Abstract. The scaling of turbulence, turbulent particle flux and cross-phase with shear is
measured and compared with various analytical theories. It is found that the scaling can be
expressed as a second-order polynomial and that the cross-phase plays a key role in the
suppression of the particle flux. The variable rate of shear, kept below the value required to
produce a Low-to-High particle confinement transition, was obtained by changing, in a shot
to shot basis, the voltage applied to an electrode introduced 4 cm into the plasma.

1. Introduction

Tokamak plasmas can undergo transitions from a low energy confinement state (L-mode) to a
higher energy confinement state1 (H-mode) spontaneously. The transition is accompanied by
a negative radial electric field inside the last closed flux surface (LCFS) and is characterized
by a steepening of the edge profiles or formation of a transport barrier and a fast reduction of
the Hα  signal, corresponding to increased particle confinement. Similar behavior to the
spontaneous L-H transition was obtained in the CCT2 and TEXTOR3,4 tokamaks by applying
an external radial electric field to the edge plasma5 with a biased electrode and thus, those
experiments suggested that the radial electric field and induced poloidal rotation played a
crucial role in the L-H transition. The increase in confinement in the spontaneous H-mode
was accompanied by a reduction in turbulence levels in DIII-D6 and PBX-M7, and in the
electrode generated one in TEXTOR. Thus stabilization of turbulence by   

r
E ×

r
B shear, a

general mechanism, was proposed8 as the underlying cause for overall confinement,
hypothesis supported by early work at the TEXT9 tokamak. Clear correlation between
externally applied electric fields and a reduction in turbulence levels, without the gradient
influence to cloud the issue, was first shown by our early work10. A variety of theories
consider the stabilization of turbulence by  

r
E ×

r
B shear by linear stabilization of modes11,12 or

decorrelation of turbulence13,14 and scalings of the turbulence suppression with velocity shear,
dv drE  were derived for either the strong or weak shear regimes. In the work by Biglari and

Diamond8 above the ensemble of fluid fluctuations normalized to its equilibrium value in a

sheared fluid divided by the ensemble in a shear-free fluid, √ √ √Θ ≡ δξ δξ
2 2

0

, is related to

the shearing rate, ωs, and the turbulent decorrelation time, ∆ωt, by:
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which is an expression valid for the strong shear regime and results in a dv drE

−2 3

dependence while Shaing15 finds a dv drE

2
dependence in the weak shear regime. Further

work by Zhang and Mahajan16 aimed to unify and extend the theory, resulting in the
relations:
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where √k⊥
2  is the ratio of the averaged square of the perpendicular wave number with shear

flow to that without shear flow, α  measures the anisotropy of the k spectrum and

t k Dc0
2

0
2≡ ( )⊥   is the decorrelation time without shear flow that depends on the diffusion

coefficient, D, and γ is a parameter between 0 and 1 determining the strength of the turbulent

regime (i.e. γ=1 for weak turbulence or γ=0.5 for strong turbulence). Later work by Ware and
Terry17 developed expressions for the response of resistive pressure gradient driven
turbulence (RPGDT) to velocity shear in the weak shear limit. This work related the
turbulence-driven particle flux, Γ, and density-potential cross-phase, δ, to the velocity shear
as follows:
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where γ0 is the dominant mode linear growth rate and W0 is the unsheared radial mode width.
A frequently unnoticed milestone of the Ware-Terry work is that there is a prediction for the
cross-phase that, since then, has proven to be a crucial parameter to understand turbulent
particle and heat fluxes. It is important to notice that the dependencies on dv drE  are mostly
quadratic or offset quadratic.

In the work presented here, the thin, (δr=1.5 cm) rotating   
r
E ×

r
B shear layer induced by the

electrode is characterized with high-spatial resolution and correlated to the profiles of
absolute and normalized turbulent quantities, including the turbulence-driven radial particle
flux. It is found that the amplitude of the fluctuations is reduced in the sheared layer and that
fact, coupled to changes in the cross-phase results in reduced turbulent transport and
improved confinement. It is also found that relatively low shearing rates are sufficient to
affect the fluctuations and a scaling with shear is produced that is compared to existing
analytical theories.

2. Description of Experiments

These experiments were performed in ohmic (OH) plasmas with toroidal magnetic field
Bt=2.25 T, plasma current Ip=200 kA and chord-averaged density ne0 =1.0E13 cm-3. The
discharge was tailored to reduce the heat flux to the electrode. The electrode is mushroom-
shaped and built of graphite composites 1.5 cm thick and 10 cm in diameter, which is
introduced to a radius of 41 cm as described in previous work 7. The ALT-II toroidal belt
limiter18 is nominally located at 46cm. The data were obtained using two fast reciprocating
probe arrays19 featuring five 1.2 mm long tips. The main reciprocating probe is located at the



outer midplane of the tokamak and the second probe is at the top. TEXTOR edge plasmas are
toroidally symmetric due to the ALT-II belt limiter20. The data for the turbulent
measurements is digitized at 1 MHz with a 10 bit digitizer and filtered by low pass 500 kHz
anti-aliasing filters. We find that the power spectrum decays very quickly with frequency and
is significant only to up to 250 kHz, thus a bandwidth of at least 500 kHz is desirable for
turbulence measurements.

The electrode voltage is applied to the
electrode as a 100 ms linear ramp starting
at 1s and then held constant for 1.5 s, as
shown in Fig. 1-e, and was varied in 50 or
100 V steps in a shot to shot basis as
shown in Fig 1-g. The electrode current
increases linearly and then remains
constant (Fig. 1-e) while the density stays
constant or shows weak signs of an
increase (Fig. 1-d) at higher voltages. The
discharge is in stationary state as shown in
Figs. 1-c and 1-d. The probe enters the
plasma at t=1.6 s (Fig.1-a), sampling the
shear layer, as evidenced by the increase in
the floating potential (Fig. 1-b). The radial
electric field increases with voltage
featuring a narrow profile that is
determined by the radial conductivity5 and
eventually bifurcates reaching a maximum
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Figure 1: Time evolution of a TEXTOR
discharge showing the electrode bias pulse
and the stable plasma conditions.

value of ~500 V/cm and producing a L-H transition, as discussed in detail in our previous
work10,5,21.

3. Results and Discussion

The density profiles, labeled by the voltage applied to the electrode, plotted in Fig. 2-b show
the effect of the shear as a slight modification, but no bifurcation behavior,
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Figure 2: Radial profiles of a) the ExB
velocity and b) density. Although the
profiles are perturbed due to the weak
shear no L-H transition has yet occurred
and the profiles are very similar.

such a dramatic steepening are seen under
these conditions. Thus it can be argued that
the experimental conditions are almost
ideal since the profile changes do not play
a major role. The poloidal velocity profiles
are directly inferred from the Er profile as
it was proven in previous work21 that the
plasma velocity and the ExB velocity are
equal. The velocity is shown in Fig. 2-b
and the velocity peaks are marked for
reference. The velocity profiles show
negative and positive shear and an average
shear is calculated over each region.

The turbulent plasma parameter profiles
obtained by the probe are averaged in the
positive and negative velocity shear
regions to obtain a point per each applied
voltage. The turbulence data is then plotted
against the average velocity shear over the
aforementioned regions. The normalized
particle flux (Figs. 3 a,d),



Cross-phase (Figs. 3 b,e) and normalized density (Figs. 3 c,f) are plotted against shearing rate
for positive (Figs. 3 a-c) and negative (Figs.3 d-f) shear. Notice that the density is normalized
ala Biglari-Diamond whereas the particle flux and angle are normalized ala Ware-Terry.
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Figure 3: Scalingss of a),d) turbulent particle flux, b),e) cross-phase and c),f) normalized
density fluctuations vs shear rate. The best functional fittings and their quality are shown.

We have performed polynomial fits to the normalized turbulent particle flux, the amplitude of
the density and electric field fluctuations and the cross-phase between them. It is found that
the best fits have a strong quadratic component as predicted by most of the theories
considered here. A clear difference was found in the scaling of the data according to the sign
of the velocity shear. A functional dependence of the form f c c VShear= −1 2 2*  fits best the
results from the region where dE/dr<0 (Figs. 3d-f) and consequently agrees with the forms
proposed by Ware-Terry (Eqs. 5 and 6) and the Zhang-Mahajan expression for weak shear in
Eq. 2 (which also agrees with Shaing's proposal). In the region where dE/dr>0 (Figs. 3a-c), a
functional dependence of the form f c c VShear= +1 1 2 2/( * )fits best the flux and normalized
density fluctuations data in agreement with the form proposed by Zhang-Mahajan (Eq. 4) for



arbitrary shear and weak turbulence. The cross-phase is best fitted by f c c VShear= −1 2 2*  in
agreement with Ware-Terry and the weak shear limit of Zhang-Mahajan. Two additional
results should be noted: Firstly, that there is a difference in the magnitude and scalings of the
turbulence, flux and cross-phase between the positive and negative shear regions, an effect
not included in the theories, which are phase-sign blind. Secondly, that the phase shows a
strong variation with shearing rate, in agreement with previous findings21 that the cross-phase
becomes a dominant element in the flux at high shear.

In general, the theories proposing a scaling that makes the amplitudes drop roughly
as dv drE

2
 seem to reproduce the data. It can be argued that a functional form that forces a

fast drop to zero is preferable but the dominance of the cross-phase can make that
requirement unnecessary. The observed dependence on the sign of the shear could be a
curvature effect.

4. Conclusions

In general, good agreement is found with the Shaing, Ware-Terry and Zhang-Mahajan
theories based on their quadratic prediction. A function of the form f c c VShear= −1 2 2*  fits
best the results obtained for the dE/dr <0 region, as predicted by Ware-Terry, whereas a
function of the form f c c VShear= +1 1 2 2/( * ), as given by Zhang-Mahajan, produces the best
results for the dE/dr >0 region except for the cross-phase. The cross-phase shows a strong
dependence on shear and therefore it should be considered intently by theoriticians. The
existing theories are blind to the sign of the shear and it is not clear if curvature effects could
play a role.
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