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Abstract ELMy H-mode plasmas form the basis of conservative performance predictions for tokamak
reactors of the size of ITER. Relatively high performance for long durations has been achieved and the
scaling appears to be favorable. It will be necessary to sustain low Ze� and high density for high fusion
yield. This paper studies the degradation in con�nement and increase in the anomalous heat transport
observed in two JET ELMy H-mode plasmas: one with an intense gas pu�, and the other with a spon-
taneous transition at the heating power threshold from Type I to III ELMs. Gyrokinetic analysis gives
the linear growth rate, 
lin of the fastest growing mode. The 
ow-shearing rate !E�B and 
lin are large
near the top of the pedestal. Their ratio decreases approximately when the con�nement degrades and the
transport increases. This suggests that tokamak power reactors may require toroidal or poloidal torque
input to maintain suÆciently high j!E�Bj=
lin near the top of the pedestal for high con�nement.

1. Introduction

The H-mode regime in the Edge Localized Mode (ELM) phase is favored for large, conven-
tional tokamak reactors since it has obtained enhanced performance for long durations.
Deuterium-tritium experiments in JET ELMy plasmas have achieved Qdt = 0.2 [1]; how-
ever the con�nement tends to degrade as the density is increased towards the Greenwald
limit. This degradation is often associated with the transition from Type I to III ELMs.
There is experimental evidence that the E � B 
ow shearing rate, !E�B can have an
in
uence on the con�nement. Some plasma regimes, such as those with weak or reversed
magnetic shear in JET and other tokamaks, have achieved considerably lower transport
transiently, with ion thermal and particle transport near the neoclassical level. Generally
these regimes have relatively large !E�B, with magnitude signi�cantly larger than the
computed maximum growth rate, 
lin of high n-toroidal modes associated with microtur-
bulence. An example of results for a JET plasma with an internal transport barrier is
given in Ref. [2]. JET ELMy H-mode plasmas heated by neutral beam injection (NBI)
have large toroidal rotation rates, ftor, with Mach numbers near unity in the center. Em-
pirical �ts [3] to the dimensionless heat transport (�i=(
iL

2

T i)) normalized by the local
ion gyrofrequency 
i and Ti scale length LT i, indicate a reduction with increasing Mach
number, further suggesting that !E�B plays a role.

This paper studies the energy transport, !E�B, and 
lin in JET ELMy H-mode plasmas
with NBI heating and degradation of con�nement. A more detailed report has been
submitted for publication [4]. Evidence is presented that, at least in the NBI-heated
ELMy plasmas, !E�B plays a role in the degradation of con�nement at high density.
Energy con�nement degradation occurs, in this picture, as a consequence of changes in
the beam-induced rotation at high density causing the reduction of j!E�Bj=
lin. Gyro
uid



simulation indicates that when this ratio decreases below a value of approximately unity,
degradation should occur [5].

2. Results

We study two JET plasmas with parameters summarized in the Table:

Shot No. (year): 43002 (1997) 49687 (1999)
Type I!III transition: Forced by gas pu� Spontaneous at threshold
Time traces: Fig.1-a Fig.1-b
R / a [m] 2.88 / 0.95 2.94 / 0.90
BTor [T] 2.8 2.0
Ip [MA] 2.6 1.9
PNB [MW] 8 (T 0)+3 (D0) 5 (D0)
ne increase large decrease
ne(0)= < ne > 0.9 ! 1.1 � 1.3
�ne=�nGreenwald ! 0.85 0.75 ! 0.35
ftor increase large decrease
�E 20 percent decrease 50 percent decrease
�i; �e� slight increase near pedestal factor 2-3 increase

Table 1: Summary of plasma parameters
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Figure 1: Top: waveforms of a) 43002 with intense gas pu� and b) 49687 with a spontaneous Type I
! III ELM transition; bottom: microturbulence suppression ratio as several radii near the top of the
pedestal. Vertical dashed lines indicate analysis times.
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Figure 3: Comparison of normalized Ti gradients with the critical values estimated by the IFS-PPPL
model vs toroidal 
ux label x

Low frequency, electrostatic drift-type instabilities, driven by ion temperature gradient
(ITG) and/or trapped-particle modes, are candidates for the anomalous transport gen-
erally observed in tokamak plasmas. We used the GS2 code [8] to calculate the linear
growth rate 
lin and the real part of the mode frequency !lin for the fastest growing
mode. The GS2 code is a comprehensive initial-value electromagnetic code which solves
the linearized gyrokinetic equation in a 
ux tube. We used up to eight species: thermal
electrons, thermal hydrogenic ions, one impurity, and the fast ions from the NBI ions.
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Figure 4: Spectra of maximum growth rate, mode frequency, and mixing length estimate of transport
versus k��i

GS2 takes as input the product of the poloidal mode number k� (= nq/r in the circular
approximation) and the ion gyro-radius �i. We adjusted the value of k��i at each time-
zone to �nd the value that maximizes 
lin. Plots of the spectra at one time-zone are shown
in Fig. 4. The mode frequency !lin is divided by ten for display in the plots. For 43002,
!lin is positive (ion diamagnetic direction), and 
lin has a broad peak versus k��i with a
maximum value around k��i = 0.30-0.50. This value is around the values typically found
in other gyrokinetic simulations [9]. For 49687 with lower R=LT i, !lin is also positive near
the midplane, but is negative close to the pedestal, typical of trapped electron modes
(TEM), where 
lin peaks at much higher k��i. The \mixing length" estimate of �i, also
in Fig.4, is given by 
lin=(k

2

� + < k2r >), including the 
ux-tube average of the radial
kr. This peaks at low values of k��i for both cases, indicating that low k��i modes cause
most of the anomalous transport. Because of this, for 49687 near the pedestal where the



TEM dominates (as in Fig.4-b), we used a typical value of 
lin near k��i � 0:5 instead of
the much higher values at large k��i. Generally 
lin is positive over a signi�cant portion
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Figure 5: Pro�les of the linear growth rate, mode frequency divided by 10, and 
ow shearing rate versus
toroidal 
ux label x. The vertical arrow in b) indicates the region where much larger values of 
max result
from the TEM-branch.

of the major radius near the outer midplane, with peak values in the region where !E�B
peaks (Fig. 5). Deeper inside the plasma a state of marginal stability is maintained in
the sense that 
lin depends sensitively on R=LT i, which is close to its critical value. This
is consistent with the observation that �i remains larger than approximately �ve times
the neoclassical level over a wide range of densities and operating conditions.

3. Discussion

We presented transport and micro-instability results for two JET ELMy H-mode plasmas
with degradation of con�nement associated with high density or the transition from the
Type I to III ELMy phase. The heat conduction increases, especially near the top of the
pedestal as the energy con�nement degrades. For the plasma with intense gas puÆng,

max remained relatively constant in time while j!E�Bj decreased. For the plasma near the
Type I!III transition, 
max increased while j!E�Bj remained constant. Thus the criterion
for reduction of the microturbulence, �exb j!E�Bj > 
max, with �exb ' 0:5 � 2:0 appears
to be applicable to these plasmas within about 10 cm of the top of the pedestal. This
suggests that tokamak power reactors relying on high density and high energy con�nement
in the ELMy H-mode may require a source of torque to maintain a high j!E�Bj=
lin near
the top of the pedestal. It may prove more e�ective to drive poloidal rather than toroidal
rotation since Er and !E�B are generated by the sum vPolBTor + vTorBPol. It may be
suÆcient to apply a torque dipole near the top of the pedestal.
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