
Progress in the Prediction of Disruption in ASDEX-Upgrade via Neural 
and Fuzzy-Neural Techniques 

 
 

F. C. Morabito 1), M. Versaci 1), G. Pautasso 2), C. Tichmann 2), The ASDEX-Upgrade Team 2) 
 
1) Università “Mediterranea” degli Studi di Reggio Calabria, Associazione EURATOM-ENEA-
CREATE, Via Graziella, Feo di Vito, I-89100 Reggio Calabria, Italy, email: morabito@unirc.it, 
versaci@ing.unirc.it. 
 
2) Max-Planck-Institut fur Plasmaphysik (IPP), D-85748 Garching bei Munchen, Germany, e-mail: 
gap@ipp.mpg.de, cht@ipp.mpg.de  
 
 

Abstract. The paper addresses the problem of predicting the onset of a disruption on the basis of some 
known precursors possibly announcing the event.  The availability in real time of a large set of diagnostic 
signals allows us to collectively interpret the data in order to decide whether we are near a disruption or 
during a normal operation scenario. As a relevant experimental example, a database of disruptive 
discharges in ASDEX-Upgrade has been analysed in this work. Both Neural Networks (NN’s) and Fuzzy 
Inference Systems (FIS) have been investigated as suitable tools to cope with the prediction problem. The 
experimental database has been exploited aiming to gain information about the mechanisms which drive 
the plasma column to a disruption. The proposed processor will operate by implementing a classification 
of the shot type, and outputing a real number that indicates the time left before the disruption will 
effectively take place (ttd).  
 

1. Introduction  
 

The idea of generating nuclear fusion energy is largely based on the concept of magnetic 
confinement. To sustain the fusion reactions, the power liberated would have to be much 
greater than that lost via radiation and transport across the magnetic field. Thus, a key role in 
the Tokamak experiment is related to the energy confinement time. Some intrinsic physical 
limits related to the efficiency of the confinement and possible large instabilities could limit 
the operational regime of the tokamak, through a rapid falling to zero of the plasma current 
[8]. Consequently, the early prediction of the deterioration of magnetic confinement preceding 
the onset of a disruptive event during the evolution of a plasma discharge in a Tokamak 
machine represents an important step forward in order the experimental activity around 
nuclear fusion to achieve a practical industrial interest. From the physical viewpoint, the 
phenomenon of the disruption represents a transfer of energy of the plasma to the surrounding 
mechanical structures. During the sudden loss of confinement and transfer of plasma energy to 
the machine related to a disruption, the plasma current and the thermal energy content of a 
tokamak plasma collapse in an uncontrollable way, thereby generating mechanical forces and 
heat loads which threaten the structural integrity of surrounding structures and vacuum vessel 
components. It is thus of primary importance to design an alarm system for detecting the onset 
of a disruption in tokamak plasma discharges. Neural Network models have been proposed in 
the recent literature as forecasting systems, with the aim of predicting the occurrence of 
disruptions sufficiently far in advance for protecting procedures to be switched on [2, 3]. The 
design of such a system is constrained from the availability of experimental examples derived 
from the monitoring of disruptive shots. In this paper, we will use an experimental database of 
discharges related to the ASDEX-Upgrade device, which has been provided by the ASDEX 
team. The database represents a collection of measurements carried out within the machine 
and of the corresponding time left before a disruptive event takes place. Each records of the 



database  refers to a time sample of the evolution of a plasma shot. The aim of the study is to 
devise a processing system that could be able to predict correctly the “time-to-disruption”, 
based on the experience gained on the available “examples” through some suitable kind of 
data analysis. The simulation and modelling environment is based on both Neural Networks 
(NN) and Fuzzy Inference Systems (FIS). We propose the use of FIS in order to improve the 
basic abilities of NN that refer to a black box model of the experiment. The fuzzy simulation 
framework is appropriate for implementing any appropriate approximate reasoning on the data 
before numerical treatment. The use of the concept of fuzzy is also suggested because the 
transition of a discharge toward the “disruptive behavior” happens without appearing 
continuity solution, i.e., by a “soft” transitions.   
The aim of the procedure is to give a correct estimation of the time of disruption, in order to 
be able to activate the control system. The paper is organized as follows: the features of the 
available database are briefly reviewed. Then, the two problems of classification of the shot 
database and prediction of the disruption are assessed. Finally, the achieved results will be 
proposed with some comments and by indicating the future directions of research. 

 
2. The ASDEX-Upgrade Machine 
 
A disruption oriented database of a block of ASDEX Upgrade discharges has been set up by 
the ASDEX Team. In this database, there are stored a set of measurements monitoring the 
plasma shots, with special reference to disruptive discharges. A large number of them were 
analysed with the purpose of finding the technical causes, the precursors and the physical 
mechanisms of disruptions [4, 7].  

The files under study derives from ten years of experimental activity carried out at the 
Institute of Plasma Physics (IPP) of Garching bei Munchen (Germany). The file training 
consists of about 11700 rows and 30 columns (62 shots) while the file testing consists of 
about 6100 rows and 30 columns (46 shots). The variables in input represent a compromise 
between the physics and the availability in real time. They include measurements of magnetic 
fields, plasma energy, input power, radiated power, a few of the divertor bolometer channels, 
the locked-mode signal and their time derivatives, referring to flat-top of lower single null 
plasmas. The shots were analysed with the purpose of inferring the technical causes, the 
precursors and the physical mechanisms of disruptions. Most of the plasma disruptions in 
ASDEX-Upgrade happen in a plasma parameter range (poor L-mode confinement) which is 
far away from the desired operational space (H-mode, high beta).  In addition, disruptions are 
usually announced by well identified precursors (detachment, MARFE, growth  and locking 
of resistive tearing modes) which can be detected by the available diagnostics.  

The database is not simply manageable, and the use of standard NN processors fails to 
achieve the desired results. This observation suggested us to properly decompose the original 
problem in parts, each one of them is “specialized” to cope with a subset of the original “full” 
database. 

 
3. The problem of the disruption database decomposition  
 
In the ASDEX-Upgrade database, each disruptive shot is described by a set of measurements 
from magnetic sensors and an indication of the time before the disruption will effectively take 
place. The available measurements represent a multidimensional input space for our problem. 
The true dimensionality of the space is hardly definable, however, it is inessential to solve our 
problem: the interesting information is instead which are the important diagnostic signals in 
order to correctly predict? To approach the problem, we firstly cluster the available shots by 



using some qualitative informations extracted from the database. In order to show how the 
pattern of measurement vary during the discharge evolution, we plot a grey-scale 
representation of the typical patterns for some discharges. We are able to extract some 
important information for the prediction of the disruption by means of one “visual inspection” 
of the database. In what follows, we shall present an application example of the proposed 
methodology. FIG. 1 shows a grey-scale representation of the shot #10223: along the vertical 
axis we plot the successive time samples of the shot, along the horizontal axis the number of 
measurement. The grey-level agrees with the level of the measurement (white pixels 
correspond to “high” values of the measurement). The disruption occurs when the #pattern is 
over a typical number. For example, in the middle of figure, we can see the rapid and evident 
change of measurements value in the bolometer channels, #12 to #16 (oblique white line), that 
represents a very good qualitative information about the incoming disruption. The 
measurement #14 (linhc5) is able to separate the shots into two categories that we label as 
“Type 1” and “Type 2”. The “Type 2” shots are characterized by a peaking of linhc5 (FIG. 2). 
In addition, when the time course of linhc5 presents a peak, we are yet far from the disruption. 
This kind of qualitative information can be used for the separation of the database in sub-sets. 
By inspection of the figure, we can say that measures #13 (linhc4) and linhc5 can be used like 
a “mark” of the shot in the classification of disruption. We can discriminate the shots in the 
plane #13 vs. #14. By inspection of plots like FIG. 2, we are able to write some qualitative 
fuzzy rules about the incoming disruption, as follows: 
 
 
Rule #1 IF linhc4 is  Very High and linhc5  is Medium 

THEN the ttd is high 
Rule #2 IF linhc4 is  High and linhc5 is Very High 

THEN the ttd is low 
Rule #3 IF linhc4 is  High and linhc5 is Very High 

THEN the disruption is coming 

 
FIG. 1 Grey-scale representation of shot #10223.  FIG. 2  Shot #10223 linhc4 and linhc5.  

  
 
This is a very simple bank of fuzzy rules about the prediction of incoming disruption. Each 
rule is in the IF… THEN form with double antecedent because we utilize two inputs (linhc4 
and lihc5), while the consequent is single because the output of the system is the time to 
disruption. The performance of the classifier may be quantified in terms of probability of 
detection versus the probability of false alarm (PD – PFA curve). By using this naive method, 
the obtained results are already very encouraging. It goes without saying that the performance 
can be improved by adding rules in the bank, for example  by choosing a larger number of 
inputs and possibly taking advantage of the expert knowledge.  



 
4. The Identification Problem: Generation of Fuzzy Identification Systems 
 
As a first example, we have separated the categories by means of the reading of the variables 
linhc4 and lihc5. We have constructed  several FIS by using the whole set of measurements 
and various subsets of them. The extraction of fuzzy rules can be carried out by direct 
inspection. However, a potential advantage of the FIS approach is that the rules could be 
derived directly from expert knowledge on physical aspects of the problem. We have used the 
MatLab toolbox GENFIS to extract a set of rules that is able to model the data behavior. The 
rule extraction method determines the number of rules and the antecedent FMFs and then uses 
line  ar least squares estimation to determine each rule's consequent. Adaptive Neuro-Fuzzy 
Inference System (ANFIS) routine allows us to tune the FIS by means of a learning algorithm 
based on the input-output data. A network structure facilitates the computation of the gradient 
vector for computing parameter corrections in a FIS. Once the gradient vector is obtained, we 
can apply a number of optimization routines to reduce an error measure (sum of the squared 
difference between actual and desired outputs, entropy maximization,… ). We have achieved 
good results by using a combined GENFIS+ANFIS approach. The GENFIS Toolbox is able to 
choosing a priori the number of rules; the membership functions are labeled in such a way that 
each rule associates those of same name; the membership functions of each variable are 
labeled by mf1, mf2, mf3, ... . GENFIS extracts the rules so that all the input variables 
participate to every rule. FIG. 3 and FIG. 4 show examples of time to disruption estimation 
for the shots #10044 and #10106. For the second shot, the time to disruption estimation is not 
good at the beginning of the discharge. However, this is not so important to the aims of the 
disruption prediction because the incoming starts at the middle of the discharge. Therefore it 
is inessential to gain a high precision in the early stages of the discharge. The plotted 
estimation derives from the analysis of a subset of the original database which has been 
extracted by a FIS working with the whole input (sensor) pattern. Similar results could be 
achieved by using a limited subset  
 
5. Results and Conclusions 
 
The FIS and the fuzzy NNs represent an alternative method to the problems of the prediction 
of the time to disruption in Tokamak machines. An advantage of the approach consists in the 
possibility to write the rules directly from a numerical analysis of the available database, but 
they can be integrated or improved by means of the expert knowledge. The results achieved 
for the prediction of the time to disruption can be considered of interest and can be resumed in 
the following statement: the probability of correctly switching on an alarm in the range from 
400 ms to 0.5 ms before the disruption is in the order of 78%, and a very limited number of 
false alarms were detected. The classification step (partitioning of the original shot database) 
by visual inspection has given the following results:  75% of the shots can be considered  of 
the “Type 2”, while  25% are of the “Type 1”. About 4 shots are not satisfyingly classified. 
Within the two parts of the database, we achieve a relevant performance in terms of rms 
estimation error (true ttd vs. estimated ttd). In particular, the full scale rms error is of 8.5% for 
the “Type 1” databse and of 5.5% for the “Type 2” database. Of course, the results should be 
referred to the cardinality of the two different databases.  

The NN approach has been successfully applied for solving different problems to be 
faced during work, namely, the detection of redundancy in the input data; the ranking of the 
input variables, and finally, the automatic extraction of rules from the database to be proposed 
to experts for further interpretation. Future works will focus on analysing the impact of 



measurement noise on the model and on the data fusion and integration aspects. The most 
important aspect to be devised is the correction of the model based on expert knowledge. 
Indeed, the interesting results achieved are susceptible of easy improvement by implementing 
in the network structure some a priori rules possibly available.  

From the analysis of the result we are able to say that the onset of the disruption is 
predictable within a practically interesting time interval.  

Finally, the proposed “visual” approach gives us a simple way to automatically 
classify the different kinds of possible disruptions. From the reading of the pattern, we are 
able to simply express a guess about the target. The FIS model that uses a reduced number of 
diagnostics as input is sufficient for interpreting the evolution of the shots, once the kind of 
shot has been categorized.  
 

 
 

FIG. 3 Good Shots: time to disruption 
estimation by FIS  for shot #10044 

FIG. 4 Good Shots: time to disruption estimation 
by FIS  for shot #10106 
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