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Abstract

Recent progress in the theory of collective modes driven by energetic particles, as well as interpretations
of fast particle effects observed in fusion-related experiments, are described. New developments in linear theory
include: (a) Alfvén-mode frequency gap widening due to energetic trapped ions, (b) interpretation of JET results
for plasma pressure effect on TAE modes, and (¢) “counter” propagation of TAE modes due to trapped fast ion
anisotropy. The new nonlinear results are: (a) theoretical explanation for the pitchfork splitting effect observed in
TAE experiments on JET, (b) existence of coherent structures with strong frequency chirping due to kinetic
instability, (c) self-consistent nonlinear theory for fishbone instabilities, and (d) intermittent quasilinear diffusion
model for anomalous fast particle losses.

1. ALFVEN FREQUENCY GAP WIDENING

High-frequency Alfvén modes, apparently excited by fast ions, were observed during H-
minority ion cyclotron heating experiments on TFTR [1]. The mode frequency, which scales as
ne(O)'l 2 consistent with Alfvénic fluctuations, is approximately twice the TAE frequency, as
shown in Fig. 1. The high-frequency modes, seen with and also without accompanying TAE
activity, were observed when the H-minority |CRF resonance was slightly off axis on the high field
side (ReN¥ =2.35 m, whereas R,=2.62 m). The experimental parameters were 1,=1.3 MA,
Bor=2.5 T, and a,=0.97 m. With 4 MW of RF power at ;" =43 MHz, 90% of the plasmas
exhibited these modes.

The high-frequency modes are in good agreement with the predicted frequency and radial
location for an Alfvén eigenmode in the “second” spectral gap, which is opened by ellipticity.
However, this result is surprising, since the TFTR cross section is circular, so that the second
spectral gap is very narrow, with width of order (r/ R(’))Z. These high-frequency modes had not
been observed previously in hundreds of on-axis H-minority ICRH experiments. A proposed
explanation is based on a theory showing that the presence of an energetic trapped-ion population
in a tokamak plasma can broaden the width of the frequency gaps in the shear Alfvén spectrum
[2]. This new effect is in addition to the usual geometrical effects such as toroidicity or
noncircularity and sometimes exceeds them in magnitude.
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The best experimental fits to the 7-coil toroidal array of Mirnov coils give the mode number
n=4 and also indicate that these modes propagate opposite to the plasma ion diamagnetic
frequency, contrary to usual TAE modes and the related Fast lon Modes. Initial calculations of the
fast ion pressure profile show that it is hollow at the mode location (r / a=0.3,), hence consistent
with “backwards’ mode propagation. Instability requires that the magnetic precessional drift
frequency also be reversed in direction, which is predicted to occur for barely-trapped fast ions,
with poloidal turning points |9t| =371/ 4, consistent with the off-axis heating on the high-field side
in the experiments. Detailed calculations of the damping and driving terms remain to be done.

2. FINITE-BETA SUPPRESSION OF TAE MODES

In high-performance JET hot-ion H-mode deuterium discharges, the measured amplitudes
of TAEs excited by ICRF-heated fast ions gradually decrease in time and disappear completely at
the peak fusion performance [3]. Both ICRH and NBI heating powers remain constant during the
observation period. Analysis with the PION code indicates that the total energy content of ICRF-
heated protons does not decrease, nor does the energy content of the part necessary for TAE
excitation (i.e., the proton tail with E > 500 keV).

In order to understand the evolution of the ICRH-driven TAEs, the JET plasma equilibria
were reconstructed with the EFIT and HELENA codes at different time slices. Accuracy of the
reconstructed safety factor profile q(r) was checked at the TAE values g =(m+%)/ n through a
comparison of the TAE Doppler shift measurements with the profile of the differential toroidal
plasma rotation measured by charge-exchange diagnostic. Subsequently, the MISHKA code was
used for normal-mode analysis of the reconstructed equilibria.

Core-localized TAE modes computed by the ideal-MHD version of MISHKA agree well, to
within 10-17% accuracy, with the measured TAE frequencies. The computed radial width of the
TAE modes shrinks in time with increasing plasma pressure gradient, and no core-localized TAES
are found when the normalized plasma pressure gradient a = —Roqz(dB/ dr) exceeds the critical
value [4, 5] ai = €+2A0"+S*=3e+ 25> Here, S=(r/q)(dq/dr) is the magnetic shear, 8 the
toroidal plasma beta, A' the Shafranov shift, and € =r/R,.

The finite-beta suppression of TAE modes was also analyzed from the perspective of non-
ideal MHD by use of the MISHKA code that includes complex resistivity, which can model first-
order ion finite Larmor radius effects at the TAE gap location. The computed time evolution of
the TAE modes exhibits increasing radiative damping, from (y/ w),,q =0.72% at the beginning
of TAE observation to (y/ w),,q =2.6% at the end. Hence the explicit reason why core-localized
TAE modes cannot exist is their large radiative damping. The MISHKA modeling shows that
nonideal kinetic—TAEs are the only Alfvén eigenmodes that persist at the time of highest plasma
performance; however, kinetic-TAEs have anti-ballooning mode structure and hence do not
interact with ICRH-generated trapped ions.

3. TAE “COUNTER” PROPAGATION DUE TO FAST-ION ANISOTROPY

Occasionally, TAE modes excited by ICRF-heated tail ions are observed to “counter”
propagate, i.e., with phase velocity opposite to the direction of the thermal ion diamagnetic
velocity. A natural explanation—if instability arises primarily from the universal drive (spatial
gradient of the fast particle distribution)—would be that the resonant particles have a hollow radial
profile. However, here we offer another possible explanation, associated with the strong anisotropy
produced in ICRH plasmas.

With ICRH, particles whose turning points are in the neighborhood of the cyclotron
resonance surface are preferentially heated. Hence the distribution function is sharply peaked in
pitch angle, resulting in an inverted energy population (at constant magnetic moment) for many
of the heated particles. Particle anisotropy thus provides another source of free energy in addition
to the universal instability drive, and under certain conditions, it is more effective in destabilizing
counter-propagating TAE modes than co-propagating TAE modes.

Wave-particle resonance requires that the mode frequency be equal to the sum of an integer
multiple of the toroidal drift frequency (proportional to the square of the particle velocity) and an
integer multiple of the trapped particle bounce frequency (proportional to the particle velocity).
Thus, for a given bounce harmonic number, there can be up to two physical solutions for the
resonant particle velocity. However, in the case of co-propagation, there is only one relevant
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solution at each bounce harmonic resonance, and the effect of particle anisotropy is to enhance, in
an expected way, the usual universal instability drive and significantly reduce the threshold for the
onset of instability. On the other hand, in the case of counter-propagation, for a given bounce
harmonic there are either two or zero physical solutions possible for the resonant velocity,
depending on the frequency of the wave. At a critical frequency, the two roots coalesce, and one
finds that if Alfvén waves can be excited near this frequency, then, surprisingly, the growth rates
for counter-propagation are considerably larger than those found for co-propagation (Fig. 2).

4. PITCHFORK SPLITTING

In a number of JET discharges, Alfvén eigenmodes are excited by a small population of
ICRF-heated fast hydrogen ions. These experiments have revealed an intricate nonlinear
phenomenon: the excited mode exhibits a sequence of bifurcations, the first being a transition
from a single spectral line to several closely spaced spectral components, as shown in Fig. 3
(“pitchfork” splitting effect) [6].

Our interpretation of this phenomenon is based on a first-principles theoretical model for
near-threshold kinetic instabilities [7]. The key idea of the model is that the system cannot go far
beyond the instability threshold because the source of energetic particles is relatively weak, so that
the population of fast ions builds up on a much longer time scale than the characteristic growth
time of the instability. The evolution of the unstable mode in this regime is governed by the
resonant wave-particle interaction and the collision-like relaxation process for resonant particles
that can be characterized by an effective collision frequency v . Near the instability threshold,
the mode linear growth rate y (the difference between the energetic particle drive y, and the
background damping rate y,) is small compared with both y, and y, . Even arelatively small
nonlinear correction to y, can then compete with this small difference. This feature allows us to
treat the nonlinearity perturbatively by expanding the energetic particle response in powers of the
mode amplitude A and retaining only the lowest order nonlinear contribution. The resulting
nonlinear equation for the mode amplitude A has the form [7]:

. dA y oyt o, 2t 3 .2
exp(-ip)—=—"—A 7°dr [dryexp[-vHT°(2T7/3+ T
p(-ig) &t cosp’ 2 g {) 16Xp[— Ve T( 1)]

: (1)
XAt - T)A(t-T- 1) AN t-27- 1))

where the parameter @, whose value is on the order of y, /w, characterizes the fast particle
contribution to the real part of the mode frequency a) Apart from a numerical factor, |Al is equal
to the sgquare of the nonlinear bounce frequency, wb, for atypl cal resonant particle trapped in the
wave. The neglect of higher order terms in Eq. (1) is valid since the mode saturates before the
resonant particles complete a bounce period in the Perturbed field. The structure of Eq. D)
indicates that the saturated amplitude must scale as 2. The corresponding value of w, in the
saturated state turns out to be smaller than v, i. e, partlcles decorrelate from the resonance
before their motion becomes strongly nonlinear. It foIIows from the solution of Eq. (1) that the
mode converges dynamically to a steady saturated state when y is sufficiently small. However, this
saturated state becomes unstable and bifurcates when y exceeds a critical value y., equal to
0.486vy for@p<<l. Above thls threshold, the solution |s a periodic limit-cycle: A=
Ay exp(idart)[1+ aq exp(iAat) +Bl exp(—-iAat) + a, exp(i2Awt) +B2 exp( 2iAat)+...], where A
and dw are the amplitude and nonlinear frequency shift of the main spectral component, Aw is
the sideband frequency, and a; and f; are the relative amplitudes of the sidebands. Equation (1)
leads to the following relationship between y., , Vg, and Aw at the bifurcation point:
Aw =118y, =0.575V4 . AS y/Vg increases past the first bifurcation, the limit cycle solution
exhibits further bifurcations leading to period doublings. This is illustrated by Fig. 4, which shows
the power spectra of the function A(t) for three values of y/ve; .

The nonlinear saturated states described by Eq. (1) match the experimental spectra shown in
Fig. 5, in which the splitting of the initial spectral line and the subsequent period-doubling
bifurcation are both clearly seen. In the experiment, the time between the beginning of the TAE
signal and the first bifurcation is short compared to the total duration of the instability and the fast
particle slowing-down time. Hence, in thisinitial interval, the evolution of the growth rate y can be
approximated as a linear function of time and vy treated as a constant. With this assumption, the
evolution of the mode amplitude was computed from Eg. (1) over a time interval including the
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first bifurcation. To provide a seed for instability and to simulate the observed noise level, a small
random source term was added to the right-hand side of Eqg. (1). Figure 6 shows that the
experimental data (JET discharge #40328) for the time evolution of the central line and the up-
and down-shifted sidebands for the n=7 TAE mode is well reproduced by the simulation results
with @ =31/ 64 over this time interval.

In our theory, the frequencies and amplitudes of the nonlinear sidebands are determined by
the values of the growth rate y. and the effective collision frequency vy —which relationship
may provide a very accurate way to obtain these values. Indeed, the inferred value of the growth
rate is consistent with previous measurements of the ICRH drive for low-n TAE modes [8]. The
inferred value of vy is several times larger than the effective collision frequency as calculated
from pitch angle scattering due to Coulomb interactions. However, the enhanced collisionality can
be attributed to velocity space diffusion induced by the ICRH wave fields, which dominates over
that due to Coulomb collisions in high-temperature plasmas. Thus, in principle, from the value of
Vg One could then infer the fast particle diffusion coefficient due to ICRH and obtain
information about the intensity of the ICRH wave field.

5. COHERENT STRUCTURES WITH STRONG FREQUENCY CHIRPING

The steady state and limit cycle regimes of mode saturation described in Sec. 4 require the
growth rate y to be smaller than or comparable to the relaxation rate vy . When y is larger than
Ve » the solution of the truncated cubic nonlinear equation, Eq. (1), does not saturate. Instead, the
amplitude A grows to infinity in a finite time, W|th simultaneous oscillations at increasing
frequency. Equation (1) fails when A approaches yL Hence, to determine how the solution
evolves beyond the explosive phase, the Vlasov equation with a Fokker-Planck diffusion term was
solved simultaneously with the wave evolution equation [9]. The specific example discussed in
Ref. [9] is for the simplified case of the bump-on-tail instability, but similar results arise when the
TAE mode is simulated with a particle code [10].

We find that the mode saturation level is determined by the condition that the trapping
frequency of particlesin the wave is comparable to y, . We also discover the surprising result that
the explosive phase is followed by an adiabatic phase in which the saturated state persists for times
long compared to the inverse linear damping rate, and that the sideband frequencies continue to
shift upward and downward by an amount substantially larger than y, after saturation is reached.
The numerical simulation shows that a hole and a clump are formed in the particle distribution
function [9]. The hole and clump support a pair of BGK nonlinear waves, which persist for a long
time because the background dissipation is balanced by the frequency sweeping process that
extracts energy from the fast particles skimming past the moving phase space structures. The self-
consistent BGK solution [9] has w,, comparable to y, and an arbitrary time-dependent frequency
shift. As the frequency shift dw changes in time, the phase space hole moves upward in energy
and the clump moves downward. The motion of the phase space structures releases power,
proportional to y, w,dwd(dw)/dt, which should be set equal to the dissipated power yywy,. This
power balance, together with the condition w, =y, , determines the time dependence of the
frequency shift as ow = yL(ydt) . Figure 7 shows the spatially averaged distribution function as
a function of velocity and time and the power spectrum as a function of frequency and time. Note
that the peaks of the spectral power coincide with the depression (phase space hole) and the hill
(phase space clump) on the averaged distribution functlon The mode persists until diffusion
destroys the phase space structures on a time scale yL / veﬁ Interestingly, the hole-clump pair
does not spontaneously arise when the system is far above the instability threshold. In this case
there is no explosive phase to initiate chirping and separate the hole and clump; instead, the
distribution function merely flattens in the resonance region, after which the wave damps away at
the background damping rate.

Hole-clump pairs were also observed in particle simulations of TAE modes destabilized by
toroidally trapped fast ions. This instability involves many simultaneous wave-particle resonances
at different energies. Figure 8, which is a contour plot of the power spectrum of the perturbations
after saturation of linear growth, displays the time variation of the hole and clump frequency shifts
of the dominant modes. These frequency shifts agree with the theoretical prediction
Aw! y, =+0.43(y, t)Y? (dotted curvesin Fig. 8).
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6. NONLINEAR FISHBONE DYNAMICS

The fishbone instability has long been recognized to result from fast particle interaction
with the m=n=1 internal kink perturbation. Characteristic features of this instability are its
explosive growth and the frequency sweeping effect, both of which are clearly nonlinear
phenomena. Motivated to simulate this behavior, we have developed a physical model of the
fishbone instability that self-consistently treats the wave-particle nonlinearity together with the
linear g=1 layer response [11]. This model has been coupled to a df particle code to allow a
precise calculation of the nonlinear energetic particle current in general geometry. The resulting
code has been applied to the simulation of fishbone oscillations in a JET-like plasma, as well asin
larger reactor-grade plasmas.

Since the kink displacement is rigid away from the q=1 surface, a reduced dynamical
equation for the on-axis radial displacement &,(t) can be constructed [11]. The result takes the
symbolic form Fp, [Eo(t)] =Ak[&(t)]. The temporally nonlocal operator Fy,,, computed
analytically, describes all the linear physics of the bulk plasma. The term A, which represents the
response of the fast particles, is a functional of their perturbed distribution function f;,y, which in
turn is a nonlinear functional of &,(t). To compute f;,, the exact nonlinear guiding-center
trajectories are followed in the presence of a fixed-shape (top-hat-like) perturbation with self-
consistently evolving amplitude &,(t). Oy5r/ 2si mulation results reproduce the explosive (i.e., faster
than exponential) scaling &y (t) O(t, —t) during the onset of the instability in a reactor-size
plasma [12]. The explosive behavior was verified near marginal stability in both the lower-
frequency (w<ws;) regime of diamagnetic fishbone modes and the higher-frequency (w > wx;)
regime of precessional fishbone modes.

The code was also applied to a JET-like plasma with parameters characteristic to auxiliary-
heated discharges: w.; =104 rad/s, T4 =80 keV (with fast ions assumed to be fully isotropic),
and B« =0.5%. The result, shown in Fig. 9, was a burst about 10 ms in duration, with significant
frequency chirping, both features being typical of JET discharges [13].

In order to bring the fishbone simulations closer to reality, our model needs to be
generalized to incorporate fluid nonlinearities of the resonant layer near the q=1 surface. This
work is now in progress. As a first step in this direction we have evaluated the role of fluid
nonlinearities analytically in the near-threshold limit where they can be treated perturbatively.
These calculations lead to an equation similar to Eq. (1) but now with two cubic nonlinear terms,
one of which describes the kinetic nonlinearity and the other the idea-MHD nonlinearity. The
ratio of the idea-MHD contribution to the kinetic contribution is roughly on the order of
(sVA/wR)Z(rfa_q/rl)z, where s is the magnetic shear at the q=1 surface, V, is the Alfvén
velocity, R isthe major radius, w is the mode frequency, r;, IS the radia scale length of the hot
particle distribution and r is the radius of the q =1 surface. It follows from the weakly nonlinear
analysis that the ideal-MHD nonlinearity rather than the energetic particle nonlinearity controls
the explosive growth of the mode at the onset of the fishbone pulse. The relative role of the two
nonlinearities during the saturation and during the decay of the pulse still must be assessed.
However, it is conceivable that, with sufficient viscosity, the idea-MHD nonlinearity becomes less
significant or even negligible because of resonance layer broadening. The value of viscosity that is
required to suppress the ideal-MHD nonlinearity appears to be moderate if one takes into account
that the kinetic effects alone, as described by the code, eventually lead to mode saturation at a level
as surprisingly low as that indicated in Fig. 9.

7. INTERMITTENT MODEL FOR ANOMALOUS FAST PARTICLE LOSSES

A single weakly unstable mode rarely causes strong losses of fast particles since it only
affects a relatively small near-resonant area of phase space. Anomalous losses are usually
associated with multiple modes that lead to global quasilinear diffusion. However, quasilinear
diffusion requires the mode amplitudes to be sufficiently large to satisfy the resonance overlap
condition. In the presence of background damping, a weak source of energetic particles may not
be able to continuously maintain this critical level of turbulence. On the other hand, given enough
time without anomalous transport, the same weak source may create an inverted population of
particles with sufficient free energy to trigger the overlap. This situation leads to an interesting
regime of intermittent quasilinear diffusion when turbulent bursts and losses are followed by
guiescent periods during which the system accumulates free energy needed for the next burst. It is
essential that each burst releases much more energy than what would be released by a set of



TH2/4

isolated resonances. Once triggered, the burst forces the mean gradient of the particle distribution
to fall somewhat below the threshold of linear instability, which explains the decay of turbulence
at the end of the burst.

In this vein we consider a simple model with the following set of quasilinear equations,

onf o of dD

———D—=-y(f-f — =(—- 2

% 30 ° 30 ( 0), ( ¥q)D (2)
in the domain 0<Q<Qmax with boundary conditions f|Q 0=0and Daf /9Q|q- o =0. If we

take fo=Qy,, then in the absence of waves, a distribution function will build Up to f = fo.

However, if y, >y, and waves are present, a steady solution is found where f =Qy,, and D is
given by D Ovy, Q“/yy. This solution indicates that diffusion in the unstable spectrum limits the
build-up of the energetic population, but it does not explain pulsations that generally accompany
experiments. Pulsations arise in the theory if we assume that there are a discrete number, N, of
active modes, and that these modes are roughly evenly spaced in Q Then it is readily shown that
mode overlap requires D>(Q/N) Hence if vy, /(Qyy) <1/ N® the steady state quasilinear
equation cannot be satisfied. Then the weak source, vf, can drive the distribution function above
the marginal stability level, because only benign single mode excitations arise, which do not limit
the further build-up of the dlstrlbutlon If y . <Q/ N3, the distribution f can approach its
maximum value fq. If yL>Q/N > Y4, the dlstrlbutlon will build up well above marginal
stability, but it is subject to a catastrophic collapse, with Ioss of nearly all particles since the
quasilinear equatlons now allow a solution with D=(Q/ N) where total particle loss occurs in a
time less than yd It will take arelatively long time, T,ecovew DQ/(yLN V), for the distribution to
build up until the next pulse takes place However, if vy, / yd <Q/(de ) <1, the quasilinear
equation with the constraint D=(Q/ N) predicts wave evolution with short pulses and small loss
fractions for each pulse. In this case, the energetic particles build up to slightly above the marginal
stability level and fall somewhat below this level with each pulsation. A fraction £ O[Q/(ygN Y2
of particles are lost during a short turbulent pulse interval, T /(de) , and a longer
recovery time, Tyecovery ~(QY4/N )’ lvy, O DY2, is needed E)efore the instability is re-triggered.

This discrete mode modification of the solution of the quasilinear equations has pulsation
characteristics similar to those of the heuristic predator-prey model [15]. However, in the
quasilinear model with discrete modes, basic physics principles govern the dynamics.

Our picture of intermittent global diffusion has features that are characteristic of beam
losses produced by toroidal Alfvén eigenmodes in TFTR [16] and DIII-D [17]. This avalanche-
type scenario is not limited to the problem of fast particle transport, but should be applicable as
well to the more general problem of turbulent transport.
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FIG. 9. On-axis displacement (left) and frequency (right) of a smulated fishbone burst in a JET-like plasma.
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