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Abstract The polarisation current associated with a Neoclassical Tearing Mode is studied by means of
drift kinetic δ f simulations. This current has been invoked as a possible explanation for both the observed
threshold for the minimum island size that can grow unstable and the scaling of the plasma pressure at
the mode onset with the normalised gyroradius. The numerical approach presented in this paper does not
require assumptions on the island size or the island rotation frequency, which are in contrast necessary
in the analytic theory. The calculations are performed in toroidal geometry in the presence of a helical
perturbation. In the case of an island width comparable to the ion banana width (typical for the early
phase of a NTM) it turns out that the polarisation current decays linearly with decreasing island width.
Moreover it is found that the sign of the polarisation current can flip for rotation frequencies close to the
diamagnetic frequency. The kinetic effects mentioned above are not included in the present theory and
must be considered in order to determine both sign and size of the polarisation-current contribution to
the NTM evolution.

1. Introduction
The tearing mode [1,2] can be neoclassically destabilised in an otherwise tearing-stable plasma,
as it has long been shown both theoretically [3,4] and experimentally [5,6]. In this case, the
mode is driven unstable by the loss of bootstrap current inside an initial (“seed”) magnetic is-
land. The magnetic perturbation associated with this drop in the bootstrap current leads to a
further growth of the island. The mode usually saturates when an equilibrium between the neo-
classical driving mechanism and the stabilising influence of the current profile (expressed by
a negative stability parameter∆0) is reached. A saturated Neoclassical Tearing Mode (NTM)
causes a confinement degradation in today’s fusion devices, and would reduce significantly the
performance of ITER. At present, we can say that both the neoclassical growth and saturation
of the NTM are well understood. However, predictions on the conditions under which the NTM
will appear in ITER, and calculations about its possible stabilisation, are made difficult by the
uncertanties about the physics determining the stability of “small” islands, i. e. islands with a
size comparable to the seed-island size, as is the case in the early phase of the mode, or when the
island width is reduced e.g. through localised curren drive [7]. In particular, it is often seen ex-
perimentally that the seed island must exceed a given threshold in order for the mode to become
unstable. This is an indication that there must be some stabilising mechanism, acting at small
island widths, that balances the neoclassical drive. Among the possible candidates discussed in
the literature, the one which has probably received the most attention is the polarisation current
connected with the time-dependent electric field associated with the rotation of the island with
respect to the plasma [8,9]. Actually, whether this contribution to the evolution of the NTM is
stabilising or destabilising is far from being clear (see Ref. [10] for a comprehensive summary).
This is basically due to the fact that an accurate description of the physics determining the island
rotation frequency is missing, so that the magnitude and even the sign of this frequency are still
under debate. An interesting issue related to the polarisation current is the range of applicability
of the existing theory in terms of allowed island (half-)widthW. The drift kinetic theory of the
island polarisation current in a toroidal geometry has been developed by Wilson et al. [9]. In
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this approach, the ion distribution function is expanded assuming

wb=W� 1; (1)

wherewb =
p

ερp is the thermal ion banana width (ρp is the ion gyroradius calculated with
the poloidal magnetic field). Moreover, in order to isolate the polarisation current from the
contribution of the parallel ion streaming, it is assumed that

ω� kkvk; (2)

whereω is the island rotation frequency in the plasma rest frame,vk is the particle velocity par-
allel to the magnetic field andkk � (m=Rq)W=Lq is the parallel wave vector (m is the poloidal
mode number of the resonant surface,R is the major radius andLq = (1=q)(dq=dr) is the scale
length of the safety-factor profileq). Assumingω � ω� andLn � Lq, whereω� is the diamag-
netic frequency andLn the scale length of the density profile, it isω�=kkvk = ρp=W, so that the
condition expressed by Eq.(2) is equivalent toρp �W, consistently with the assumption that
the polarisation current is important only for small islands. Summarising, the applicability of
the existing kinetic theory is limited to the range

p
ερp <W < ρp.

It turns out, however, that under experimental conditions the assumption of Eq.(1) is violated.
At the ASDEX Upgrade tokamak, for instance, typical values [11] for the thermal ion banana
width range between about 0.7–3 cm, while the seed island that triggers the mode is in the range
1–5 cm. Hence, if the polarisation current plays a role in determining the size of the minimum
seed island that can destibilise the NTM, the theoretical investigation has to be extended also
below the range of Eq.(1). Indeed, if a trapped particle has an orbit whose size is comparable
with the island size (which is also the typical scale associated with the island potential), one can
expect that its behaviour will be different from that predicted on the basis of the above “local”
assumption (1), according to which this particle does not see any variation of the potential
during its bounce motion. This effect is supposed to be significant especially in the region
around the island separatrix, where the potential changes rapidly.
Also an investigation of the polarisation current for frequencies which do not satisfy the condi-
tion expressed by Eq.(2) is necessary, since the actual value ofω is unknown, and the relevant
physics in a full 3D geometry has not been considered so far.
To treat these phenomena in a realistic geometry, a numerical approach becomes necessary.
Drift kinetic δ f simulations of the polarisation current for a broad range of island rotation
frequencies and in the “small-island” limit are the subject of this paper. It is shown that the
relaxation of the assumptions (1,2) mentioned above leads to significant changes of the usual
picture of the polarisation current.

2. Physical picture of the polarisation current in the presence of a rotaning island
Under experimental conditions, a magnetic island is in general rotating with respect to the
surrounding plasma. As mentioned above, there exists still no reliable prediction of the island
rotation frequencyω. This issue will not be addressed in this paper. The rotation frequency will
be taken as a free parameter in the numerical simulations. The electrostatic potential associated
with the island rotation, which determines the island polarisation current, is proportional toω,
cf. Eq.(3) below. In this Section, the potential which is used in the simulations is briefly derived
and the resulting polarisation current is discussed.
In the presence of an island, the magnetic fieldB will be written asB = RBt∇ϕ+∇ϕ�∇(ψ+

ψ̃), whereBt is the equilibrium toroidal magnetic field,ϕ is the toroidal angle,ψ is the unper-
turbed poloidal flux and̃ψ = αcosξ = �RAk is the helical flux perturbation which describes
the island. The helical angleξ � mθ� nϕ�ωt has been introduced, wherem andn are the
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poloidal and toroidal numbers of the mode andθ is the poloidal angle. The quantityΩ de-
fined asΩ� 2(ψ�ψs)

2=W2
ψ�cosξ (the subscripts denotes evaluation at the resonant surface

andW2
ψ = 4αqs=q0s, where the prime indicates differentiation with respect toψ) can then be

used as a flux-surface label, sinceB �∇Ω = 0. With this definition,Ω = �1 corresponds to
the O-point of the island,Ω = 1 to the separatrix. It can be shown that the (poloidally aver-
aged) gradient operator alongB can be introduced as∇k = kk ∂=∂ξjΩ. The electrostatic po-
tential can be obtained by supposing that the mobile electrons short-circuit the parallel electric
field Ek =�∇kΦ� (1=c)∂Ak=∂t. Using the identity∂Ak=∂ξ = (qkk=m)∂ψ=∂ξjΩ, the condition
Ek = 0 yields

Φ =
ωq
mc

[(ψ�ψs)�h(Ω)] ; (3)

whereh(Ω) is a flux-surface function do be determined from the boundary conditions. It can be
assumed that the electric field vanishes far away from the island,h(Ω)! (ψ�ψs) if jψ�ψsj�
Wψ. The simplest choice is then

h(Ω) =
Wψp

2

�p
Ω�1

�
Θ(Ω�1) : (4)

HereWψ is defined to have the same sign asψ�ψs, Ω = 1 corresponds to the island separatrix
andΘ(x) is the Heaviside function, which is introduced to be consistent with the quasi-neutrality
condition and to ensure the flattening of the density profile inside the island, since it turns out
thatn= ns+n0sh(Ω).
The electric fieldE =�∇Φ can be regarded as composed of two terms, cf. Eq.(3). The first one
is proportional to the unperturbed fluxψ and leads to anE�B rotation of the whole plasma,
mainly in the poloidal direction. The term proportional toh(Ω) vanishes inside the island and
damps the electric field far away from it. In other words, the second term in Eq.(3) represents
the potential in the island’s rest frame, where the field has no explicit time dependence. In this
reference system, the polarisation current can be understood more easily. TheE�B flow is
faster around the islandO-point than around theX-point, cf. Fig. 1. The corresponding ac-
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Figure 1: Polarisation currentjpol in the presence of a magnetic island.

celeration and deceleration of the plasma along the flux surfaces,ρdv=dt (ρ is the mass density
here) must be balanced by a Lorentz forcej �B, where the current is flowing perpendicular to
the flux surfaces. This current is the classical polarisation current,

jclass
pol =

en
ωc

dvE

dt
=

en
ωc

(vE �∇)vE: (5)
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The picture is slightly more complicated in a toroidal device, where the poloidal rotation is
neoclassically damped and a parallel fluxuk = cE=Bp develops in such a way that its poloidal
component compensates the poloidal component of theE�B flow. The neoclassical polarisa-
tion current is then

jnc
pol =

en
ωcp

(vE �∇)uk; (6)

which is a factorB2=B2
p = q2=ε2 higher than the classical one, because in the latter case the

flow that varies along the flux surface is a factorB=Bp larger than in the former case, and the
corresponding acceleration in the Lorentz force must be provided by the poloidal component of
the magnetic field. As is apparent from Eq.(6), the polarisation current is mainly carried by the
ions, which have a larger inertia.
The motion of the particles carrying the neoclassical polarisation current has been investigated
by Hinton and Robertson [12]. They have shown that a time-varying electric field modifies
the orbits of the trapped particles in such a way that a net radial drift (much larger for the
ions) is obtained. This drift is transferred collisionally to the untrapped particles, giving the
neoclassical polarisation current as discussed above. In the case of a rotating island, however,
if the collision frequency is smaller than the island rotation frequency, a trapped particle can
drift radially back and forth several times before experiencing a collision, so that the collisional
momentum transfer to the passing particles flux-averages to zero and the polarisation current is
carried by the trapped ions alone. In this case the neoclassical enhancement factor isq2=

p
ε,

i.e. a factorε3=2 smaller than above. This will be the situation considered in the simulations
presented in Sec. 4.
The polarisation current (perpendicular toB) is closed by a parallel electron current to ensure
charge neutrality. This parallel current contributes to the NTM evolution as described by the
Rutherford equation, which is obtained by substitutingjn:i:

k
into:

4π
1:22ηc2

dW
dt

=
∆0

2
+

4
p

2
c

qR
sBW

Z ∞

�1
dΩ

I
dξcosξp
cosξ+Ω

jn:i:
k

: (7)

In Eq.(7),η is the neoclassical resistivity,∆0 is the usual stability parameter of the current profile
[2], s= (r=q)dq=dr is the magnetic shear (r being the minor radius). The contribution tojn:i:

k

due to the polarisation current is found to scale proportional to 1=W2, yielding a term propor-
tional to 1=W3 in Eq.(7). This explains why the polarisation current is particularly important in
the initial phase of the NTM, when the island width is small. The scalingjpol

k
∝ 1=W2 is due

to the fact that in∇k jk = �∇? � j? one has∇k ∝ kk ∝ W and∇? ∝ 1=W. The (perpendicular)
polarisation current itself is independent of the island size becausevE and its derivative along
thevE-direction do not depend onW, cf. Eq.(5) or Eq.(6). The limits of validity of the picture
outlined in this section are discussed below on the basis of Monte Carloδ f solutions of the ion
drift-kinetic equation.

3. The Monte Carlo δ f approach
The calculation of the polarisation current for an arbitrary island width relies on the solution of
the drift kinetic equation

d f
dt

=
∂ f
∂t

+
�
vkb̂+vd +vE

�
� ∂ f

∂r
� e

mi

v �∇Φ
v

∂ f
∂v

=C( f ) (8)

in a toroidal geometry, including the presence of the island in the magnetic configuration. In
Eq.(8), f is the ion distribution function,vd andvE are the magnetic and electric drift velocities,
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e andmi are the charge and the mass of the ions andC is the pitch-angle scattering operator. In
this paper, theδ f method is employed. The distribution function is written as the sum of a time-
independent analytically-known bulk termf0 and a deviationδ f to be evaluated numerically.
The equation forδ f is then

d(δ f )
dt

=C(δ f )�vd �∇ fM�
e fM
T

vd �∇Φ; (9)

where the right-hand side of Eq.(9) represent the “source” which leads to a deviation fromf0,
supposed here to be a MaxwellianfM. The numerical scheme employed here is very close to that
already used to study near-axis neoclassical transport [13] and bootstrap current in the presence
of an island [11] and already described in detail. The evolution of the system is represented by
means of “markers”, which span the whole phase space. They evolve according to the equations
of motion, which are integrated by means of the code HAGIS [14]. Collisions are implemented
by means of a momentum-conserving Monte Carlo procedure [13].
The magnetic equilibrium is specified analytically to save computational time. The unperturbed
magnetic surfaces are circular and concentric. A magnetic perturbation of given helicity can be
superimposed as̃ψ = αcosξ, where both the mode amplitudeα ∝ W2 and the mode rotation
frequencyω (contained inξ) are input parameters in the simulations. No evolution ofW andω
is considered. Flux-surface averages are obtained by integrating in space between neighbouring
surfaces. For quantities which fux-surface average to zero, a further refinement in the spatial
integration is obtained by introducing smaller cells in theξ-direction (Fig. 1).

4. Numerical results
In the numerical simulations, ITER-relevant parameters have been employed: major radiusR=

8 m, magnetic fieldB0 = 8 T, deuterium plasma with densityni = 1020 m�3, temperatureTi = 5
keV. A flat background pressure profile is taken and no bootstrap current is generated. The only
contribution to the parallel flow is then due to the island electric field. Since the perpendicular
current is zero when flux-surface averaged, it is calculated here asj?� ( jupper

?
� j lower

?
)=2, where

the superscripts refer to the lower (from theX-point to theO-point) and upper (O-point toX-
point) part of the island, see Fig. 1. The poloidal and toroidal mode numbers in the simulations
arem= 3, n= 2, respectively.
The consequences of the relaxation of the limitations (1,2) on the allowed island width and ro-
tation frequency which are usually required for an analytic treatment of the NTM dynamics are
investigated separately. The behaviour ofj? as a function ofω is discussed first. In this case, a
“large” island width (wb=W� 0:1) is taken. The results of the simulations are shown in Fig. 2,
where j? is radially averaged on the island inside and over a region lying within a distance
of 3W from the island separatrix. Since pressure gradient is zero in these simulations, the
polarisation current should scale asj? ∝ ω2, consistently with Eq.(5) and the fact thatΦ ∝ ω,
Eq. (3). The behaviour ofj? is much more complicated, indicating that other physical pro-
cesses are involved. An analysis of the particle motion in the island potential shows that when
the frequency is small (�0:5 <

� ω=kkvth
<
� 0:5, where in these simulationskkvth = 3:9 �103 s�1)

the toroidal drift of the trapped particles cannot be neglected. It turns out that when the toroidal
drift has a frequency comparable with the island rotation frequency, a trapped particle can drift
away from the perturbed magnetic surface under the influence of the radial component of the
E�B velocity, related to the angular components of the island electric field. A sign reversal
in j? is found forω=kkvth ' 0:1, which corresponds approximately to twice (sincen= 2) the
precession frequency of the thermal ions. This can be seen in Fig. 3a, where the particles with
v=vth � 2:3 have a toroidal drift frequencyωtd � ω=2. Whenω increases above this value, the
E�B flow starts to dominate the motion, forcing the trapped particles to follow approximately



6

-4 -2 0 2 4

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
ω/k|| vth

-5.0•10-8

0

5.0•10-8

1.0•10-7

1.5•10-7

j pe
rp

 / 
e 

n 0
 v

th

Figure 2: The perpendicular currentj? (normalised toenvth) as a function of the island rotation
frequencyω (normalised to the parallel streaming frequencykkvth). The dashed curve shows
the estimate(ωr=m)2=rωcvth.

the perturbed surfaces and the standard polarisation current (cf. again Fig. 1) sets in. This leads
j? towards positive values, until thex axis is crossed on both sides. This second sign reversal
is particularly important, because it occurs for values ofω which lie in the range where it is
expected to be experimentally, i.e. close to the diamagnetic frequency. This can be seen from
Fig. 2, recalling thatω�=kkvk = (ρp=W)(Lq=Ln), which is close to unit, at least when the island
is not fully developed. This transition is not captured by a fluid approach, or by a kinetic treat-
ment in a slab geometry. It is also interesting to notice that in the range where the “standard”
polarisation current is found,ω starts to be comparable to the bounce freuency of the ionsωb,
in particular the slower ones. In fact, it is seen in the simulations that thermal particles start
to drive j? to positive values in Fig. 2 at smaller values ofω when compared to suprathermal
(Fig. 3b). A Fourier analysis of the motion shows the interference of the two periodic motions.

(a) (b)

Figure 3: Velocity distribution of the perpendicular currentj? in the first outer cell after the
island separatrix forω=kkvth = 0:15 (a) andω=kkvth = 0:51 (b).

Finally, for very high island frequencies, particles withωb
<
� ω are seen to reverse again their

contribution to j?. It is recalled that the polarisation current contributes to the island evolu-
tion through its parallel closure, which can be obtained by integrating the continuity equation
∇k jk =�∇? � j?. If one evaluates the sign of the contribution of the polarisation current (when
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j? ∝ ω2) to the island stability using the simulated radial profiles and the previous equation,
it turns out that the polarisation current is stabilising if the region across the island separatrix
is excluded from the radial integration, while it destabilising if it is included, according to the
present theoretical understanding [15]. Moreover, applying similar considerations to thej?-
profiles corresponding to the sign reversal discussed above, one can deduce that the different
sign of j? should correspond to a different sign ofjk, implying a different contribution of the
polarisation current to Eq.(7).
The dipendence of the perpendicular current as a function of the island widthW has been studied
takingω in the frequency range where thej? ∝ ω2, i.e. where the standard polarisation current
dominates. The parallel flux which develops as a consequence of the neoclassical damping of
the poloidal rotation (see Sec. 2) behaves, whenW is reduced down to the order of the banana
width wb, in a way which reminds the scaling of the bootstrap current in the same situation [16].
This can be easily understood since the physics governing the two phenomena is very similar. It
is found that the trapped particles drifting close to the island can cross its separatrix, so that they
move according to an averaged potential (or, in the case of the bootstrap current, an averaged
pressure), which changes across the separatrix according to Eqs. (3,4). In a reference frame
moving with the island, the electric potential is proportional to the functionh(Ω) and vanishes
inside the separatrix. Therefore, when the orbit width of the trapped particles is comparable
to the island widthW and the particle drift significantly into the island, the polarisation drift
is reduced, as shown in Fig. 4. In the standard theory (W � wb), j? does not dipend onW,

standard
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non-negligible
orbit width
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Figure 4: Polarisation current reduction for island widthsW comparable to the ion banana width
wb.

as discussed in Sec. 2. The reduction of the polarisation current results to scale linearly with
W=wb. A sign flip of j? is found in these simulations to occurr at aboutW � wb, due to the
contribution coming from inside the island. Again, one can try to evaluate the effect of this
behaviour onjk from the continuity equation. A preliminar analysis indicates thatjk follows
the behaviour ofj?, leading to a reduction of its contribution in the Rutherford equation and
possibly even to a sign reversal for very small island widths.

5. Conclusions
The polarisation current due to a rotating magnetic island has been studied in this paper employ-
ing drift kinetic δ f simulations. The numerical approach enables one to investigate a broader
parameter range than allowed by the analytic 3D theory. Only the ions are described by the
simulation markers, and the potantial is prescribed. The electrons just short-circuit the parallel
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electric field. An extension of the analysis to include self consistent potentials and the electron
dynamics would be very interesting and is planned for the future.
The two issues investigated in this paper, namely the variation ofj? with the island frequency
ω and the island widthW, show that a complete kinetic description of the particle dynamics in
toroidal geometry is indispensable in order to obtain a reliable calculation of the polarisation
current. A sign reversal, not predicted by the fluid theory, has been found for frequencies close
to the diamagnetic frequency even in the absence of a pressure gradient. Moreover, the size
of the current is usually overestimated in the analysis of the mode evolution, since it decreases
when the island width is comparable to the ion banana width. These results point towards a re-
duction of the role the polarisation current in the evolution of the NTM. However, a contribution
to the determination of the NTM threshold cannot be excluded.
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