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Abstract. It is found that magnetic field has a stabilization effect whereas the sheared flow has a destabilization
effect on the RT instability in the presence of sharp interface. RT instability only occurs in the long wave region
and can be completely suppressed if the stabilizing effect of magnetic field dominates. The RT instability
increases with wave number and flow shear, and acts much like a Kelvin-Helmholtz instability when
destabilizing effect of sheared flow dominates. It is shown that both of ablation velocity and magnetic filed have
stabilization effect on RT instability in the presence of continued interface. The stabilization effect of magnetic
field takes place for whole waveband and becomes more significant for the short wavelength. The RT instability
can be completely suppressed by the cooperated effect of magnetic field and ablation velocity so that the ICF
target shell may be unnecessary to be accelerated to very high speed. The growth rate decreases as the density
scale length increases. The stabilization effect of magnetic field is more significant for the short density scale
length.

1. Introduction

The Rayleigh-Taylor (RT) instability occurs in inertial confinement fusion (ICF) and core-
collapse supernova when a heavy fluid is accelerated by a light fluid [1-5]. This instability is
annoying because it obstructs the realization of ICF. Hence, it is important to seek physical
mechanisms that can suppress such instability. In almost all the treatment, there is no relative
velocity between heavy fluid and the light fluid. This is a reasonable assumption but not fully
justified. In realistic situation, compression will inevitably give rise to an inhomogeneity
along the direction perpendicular to the interface between the heavy and light fluids. This
inhomogeneity can induce an equilibrium flow parallel to the interface. Thus, it is interesting
to study the effect of the equilibrium flow and its shear on the RT instability. On the other

hand, the growth rate of the instability is commonly written as y = a,/kg /(L1 +KL,) — SkV,,
where k is the wave number, g is the acceleration, V, is the ablation velocity, and L, is the

density scale length at the ablation surface. Unfortunately, the coefficients « and g are not
universal constants and fitting their magnitudes in different numerical simulations has shown
different values. Therefore, « and £ must be functions of some parameters such as
equilibrium parameters and the perturbed wavelength.

Recently, the self-generated magnetic fields in laser-produced plasmas have attracted much
theoretical and experimental attention for their roles in the design of ICF [6]. The self-
generated magnetic fields can be produced by processes such as filamentation, resonance
absorption, thermal, and Weibel instabilities [7]. Simulations on the interaction of an
ultraintense laser pulse with an overdense plasma target have shown extremely high magnetic
field strength up to 10° MG. These extremely strong magnetic fields may have interesting
effects on the physics of ICF, including the RT instability.
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In this paper, we consider the effects of magnetic filed, shear flow, and ablation velocity on
the linear growth of RT instability. The starting point of our work is the ideal
magnetohydrodynamic (MHD) equations in the SI system as follows:

PV (o) =0 M
pz—l::—Vp+J><B—pg 2
J=u"VxB (3)
%?:—VXE (4)
E+uxB=0 ()

where p is the mass density, d/dt is the convective time derivative, u the fluid velocity, p the
plasma pressure, J the current density, and B and E are the magnetic and electric fields,
respectively.

We are going to investigate the perturbation of the equilibrium and assume all quantities are
of the form f = f,+ f, exp(iky —iawt) where the subscripts ‘0’ and *1’ denotes respectively

the equilibrium and small perturbation.
2. The effects of magnetic filed and sheared flow on RT instability

It is assumed that the inertial state of fluid is described as u, =u,,(z)e, +u,, (2)e, ,
Po=pe(2) , and B, =B, (2)e, +B,, (2)e, so that V-B;=0, and V.u,=0 are
automatically satisfied. Assume the perturbation of velocity and magnetic filed respectively
as ul = exulx(z) + eyuly(z) + ezulz(z) ' Bl = exle(Z) + eyBly(Z) + ezBlz(z) :

'y
z Plasma

FIG. 1 The scheme of velocity, gravity, density , pressure, shear flow and magnetic field.

The linearized version of equations (1) - (5) for the perturbations can be combined as

d d u dp u
— —ku,)? —k?ui]—| —=— |} =k? —ku,,)? —k2ud]+-L2 1z
4z {po[(a) yO) A dZ(a)—kUyo]} {po[(w yO) al dz g}(w_kuyoJ
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(6)

where u, =B,/ up, isthe Alfvén velocity. Let @.=w—ku,, u,(z) =u,(z)o/w. and
p.0° = py(w? —k?u?), then the above equation becomes:

d (p* dUZ):kz(p*_l_%ijuz )

dz dz dz o’

If asharpinterface existsat z =0, the equilibrium mass density, magnetic field and flow
have a jump:

pPo(2)=p_+(p, —p)N2), p.>p_. (8)
B,,(2) =B, +(B,, =B, )h(z) )
U,(z)=u, +(u, —u, )h(z) (10)

where h(z) is the Heaviside function and defined as h(z-¢) = fooé(x—cj)dx . Hence, if all
of p., p,, u._, u,, B_ and B, areconstants, Eq. (7) can be simplified in either side
of z=0 as d’u,/dz* =k’u,. This equation has a neat solution:

U, () = u,.exp(kz) +u,,[exp(-kz) —exp(kz)]h(z) (11)
By using Egs. (8-11), integration of Eq. (7) over the sharp interface from 0 to 0 gives

p+(a)_ kuy+)2 +,0_(a)_ kuy—)2 = _kg(p+ _p—) + kZ(BZ— + B§+)/1u (12)

whose solution is complex and can be separated into two parts w=w, +iy , where
o, =k(p.u,_+p.u,.)(p_+p,) stands for the pure oscillating frequency which results in a
Doppler shift. Meanwhile, the imaginary part

y =[gkA, +K°57(1— A?) —K*uZT"? (13)

is the growth rate of RT instability, where A =(p_—-p,)/(p_+ p,) isthe Atwood number ,
6, =lu,, —u, |/2 denotes the reduced difference of equilibrium flow across the sharp

interface and v, =[(B7_ +BJ,)/(u(p_ + p,))I'? is the reduced Alfvén speed.

At first, we would like to discuss the effect of magnetic field on RT instability. It can be
obtained from Eq. (13) that

oylov,, =—kv,, 1y <0 (14)

The growth rate is a monotonic function that decreases as v, increases, which is confirmed

by Fig. 2. In other words, RT instability can be suppressed by magnetic field, and even
quenched when the magnetic field is strong enough that the v, is larger than the threshold
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vy =[(1- A*)S8Z + gA, /K]"?. For perturbations with large wave number or short wavelength,
this threshold is relatively small and the RT instability can be quenched easily. This
stabilizing effect is provided by the Lorentz force in the z-direction against the gravity,
which is produced by the perturbed current J,;, and the equilibrium magnetic field B, .
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FIG. 2 Growth rate via reduced Alfven speed v, FIG. 3 Growth rate via reduced shear s,
for k=10, A =05 and s, =10. for k=10, A, =05 and v, =1.0

Secondly, we would like to discuss the effect of sheared flow on RT instability.
Similarly, it can be obtained from Eq. (13) that

0y108, =k°5,(1-A2)/y >0 (15)

Hence, the growth rate increases monotonically with sheared flow. As shown in Fig. 3, the
increment in growth rate goes into the linear stage for sufficiently large shear. Therefore,
sheared flow reinforces the RT instability and is the governing drive when

k(1- A*)s2/ A, >> g, which can be achieved when one of following conditions met. 1) Wave

number is very large. 2) Flow shear is adequately strong. 3) Atwood number is small. When
destabilizing effect of sheared flow dominates over that of gravity, the first term in the
expression of growth rate » can be ignored and the RT instability acts much like a Kelvin-

Helmholtz instability.

Thirdly, we would like to discuss the effect of density gradient on RT instability. It is
easy to find out from Eq. (13) that

oy 1A, =Kk(g—2kA, 52)/(27) (16)

which implies that the growth rate increases monotonically with A, if 0< A < g/(2k5?).
Therefore, growth rate y reaches its maximum y., =(gk—k*2)"? at A =1 if
2kA 52 <g . Otherwise, it achieves a maximum y,_, =[g°/(452)+k*(52 —v2)]"* at
A, =g/(2ks?) if 2ks? >g. The dependence of growth rate yon A, is presented in Fig.
4 where v, is set fixed to 1.0. The solid line with k=1.0 and &, =1.0 is the only curve
increasing monotonically because the condition g > 2ks; is satisfied. The dash line with
k=1.0 and o6, =3.0 and dot line with k=2.0 and &, =3.0 are more unstable than the
solid line due to the destabilizing effect of shear flow. Growth rate rises with A if
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2kA, 57 < g . However, the growth rate is mainly driven by the shear flow if 2kA 57 > g, and
will increase in the beginning and fall down as A, increases.
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FIG. 4 Growth rate via the Atwood number A FIG. 5 Growth rate against wave number as
for v, =1.0. A =05 and v, =10.

Finally, we would discuss the dependence of growth rate on wave number. From the
partial derivative of the growth rate, it is easy to obtain

0710k =[gA, 12+K(57 (1— AD)—V2)1ly (17)

We can find out that the parametric curve described by 71— A?)=v2 divides the whole
parametric space into two parts: one is the monotonically increasing part where
A=V —52(1- A?) <0, the destabilizing effect of sheared flow dominates, and growth rate
increases with k and ¢, ; the other is the nonmonotonic part where A >0, the stabilizing
effect of magnetic field dominates, and the growth rate approaches its maximum
Vow = 9A, 1(2A"?) at k_ =gA, /(2A) and then falls down so that no instabilities occur in
the short wave region when k> gA; /A =2k, . As an example, the relationship between »
and k is shown in Fig. 5 where A, =0.5 and v, =1.0. Solid line (6, =0.0), dash line
(6, =0.8), and dot line (0, =1.0) satisfy A >0 so that magnetic field dominates. Thick line
(0, =1.1), thick dash line (8, =1.1547) and thick dot line (o, =1.2) satisfy A <0 so that

flow shear dominates. The thick dash line with A=0 corresponds to the classical RT
instability that ignores effects of magnetic and sheared flow, which is equivalent to the case
where magnetic stabilization is balanced by shear flow.

3. The effects of magnetic filed and ablation velocity on RT instability

For simplicity, suppose that the plasma motion is incompressible and with a ablation velocity
across the ablation front, namely V-u=0 and u,=u,,(z)e,. Consider that there is a

magnetic field parallel to the ablation front, namely B, =B, e, , where B, is a constant.

Assume the perturbation of velocity and magnetic filed respectively as u, =u,e,, and

12~z

B,=B,e,, where B, and u,, areconstants. The scheme of quantities is drawn in Fig. 6.
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The linearized version of Equations (1) - (5) for the perturbations can be combined as

—|a)+u0 . pOI ) pl =O (18)
(U'u, +9)/ p, —lto+u,+ikuy/@l||u,

Let w=iy, itis easy to obtain the dispersion relation as follows
(7 +u,")? +KPUA (7 +uy") = (U, + g)s Ty =0 (19)

where s=(p,'/p,)" isthe density scalelength. If without magnetic filed, namely u’ =0,
Eq. (19) is reduced to y, =+/(u,'u, + g)/s —u,". Obviously, the growth rate decreases when

the ablation velocity increases since we have 0Jy,/ou, =u,'/2,/s(u,'u, +g) <0 for u,'<0.

It is straightforward to get a real solution from Eq. (19) as

2 2"%a 1
=——Uy'~ + b++/4a®+b*)"? 20
AN 3s(b +~/4a% + b2 )3 35275 ) 20

where a =3gs—u," s’ —3u,U,'s + 3k’uis® b =—-18u,'gs’ + 2u,” s* —18u,u,” s* — 9u,'k’u’s®

In order to observe the dependence of growth rate on the ablation velocity and magnetic field,
we take the partial derivative of growth rate with respect to u,

oy _ Uy’
aou, 5[272(7+uol)_k2uiuol]

<0 if u,’<0 and y>-u,' (21)

Hence, the growth rate decreases as the ablation velocity increases. It is shown in Fig. 7 that
the RT instability can be completely suppressed by the cooperated effect of ablation velocity
and magnetic field. Solid line is for b=k?/? =0, dash line for b=k} =2, dash-dotted line

for b=k?}? =6 and dotted line for b=k ?=10.
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FIG. 6 The scheme of gravity, magnetic field, FIG 7 Growth rate against ablation speed
ablation velocity and density. for v,=-1, s=1 and g=10:

The partial derivative of growth rate with respect to k is
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_ 1 2
9y _ _ 2y (y + Yy )Izu,; <0 if u,<0 and y>-u,' (22)
ok  2y°(y+u,)—kuyu,

Therefore, the growth rate decreases as the wave number increases. In other words, the
stabilization effect becomes more significant for the short wavelength. We can observe that
the magnetic field has a stabilization effect on the RT instability for any k value in Fig. 8
where Solid line is for v, =1, dash line for v, =2, dash-dotted line for v, =3 and dotted

line for v =4.
The partial derivative of growth rate with respect to s is

] 2 2
8_7= _2(9 + U, Uo)72/§ <0 if g>-u,'u, and y>-u,’ (23)
ok 2y°(y+u,')—kuyu,'

Thus, the growth rate decreases as the density scale length increases. We observe that the
magnetic field has a stabilization effect on RT instability for any s value in Fig. 9 where Solid
line is for v_ =1, dash line for v =3, dash-dotted line for v_ =5 and dotted line for
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Fig 8 Growth rate against wave number Fig 9 Growth rate against density scale length
for v, =-1, s=1 & g=10. for u, =1, uv,,=-1 and g=9.38.

4. Conclusion
4.1 The effect of magnetic field and sheared flow

An analytical growth rate is derived for the RT instability by taking into account the
magnetic field and sheared flow. It is found that the magnetic field has a stabilization effect
whereas the sheared flow has a destabilization effect on the RT instability in the presence of
sharp interface.

1. RT instability only occurs in the long wave region and can be completely suppressed
if the stabilizing effect of magnetic field dominates. .

2. The RT instability increases with wave number and flow shear, and acts much like a
Kelvin-Helmholtz instability when destabilizing effect of sheared flow dominates.

3. If the wave number and the flow shear are relatively small, the growth rate of RT



8 IF/1-1Rb

instability rises monotonically with A, . Otherwise, the growth rate firstly increases,
achieves its maximum, and then falls down as density difference increases.

4.2 The effect of magnetic field and ablation velocity

By considering the effects of magnetic field and ablation velocity, an analytical growth
rate is obtained for the Rayleigh-Taylor instability. It is shown that both of ablation velocity
and magnetic filed have stabilization effect on RT instability in the presence of continued
interface.

1. The stabilization effect of magnetic field takes place for whole waveband and
becomes more significant for the short wavelength.

2. TheRT instability can be completely suppressed by the cooperated effect of magnetic
field and ablation velocity so that the ICF target shell may be unnecessary to be
accelerated to very high speed.

3. The growth rate decreases as the density scale length increases. The stabilization
effect of magnetic field is more significant for the short density scale length h.
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