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Abstract. Alfvén Eigenmodes (AEs) with frequency sweeping, or chirping AEs, are
analyzed based on the so-called Berk-Breizman (BB) model. Kinetic parameter regimes
with chirping nonlinear solutions are delimited in both supercritical and subcritical
regimes. A new quasi-periodic chirping regime is found, and the quasi-period of
chirping events depends on the linear growth rate. Based on these new findings,
fundamental kinetic parameters such as the linear drive and the external damping
rate are estimated by fitting nonlinear chirping characteristics between the experiment
and the BB model. This approach is applied to Toroidicity-induced AEs on JT-60U,
which suggests the existence of modes far from marginal stability. Two collision models
are considered, and it is shown that dynamical friction and velocity-space diffusion are
essential to reproduce nonlinear features observed in experiments. The results are
validated by recovering measured growth and decay of perturbation amplitude, and by
estimating collision frequencies from experimental equilibrium data.

1. Introduction

A major concern in burning plasmas is that high energy ions can excite plasma insta-
bilities in the frequency range of AEs, which significantly enhance their transport. In
general, the estimation of their mode growth rate γ is complex, and the question of their
stability in ITER remains to be clarified. Linear theory predicts that the Toroidicity
induced Alfvén Eigenmode [1] (TAE) is stable when the continuous damping of the
background plasma exceeds the drive of fast particles. Thus, accurate estimations of
fundamental kinetic parameters such as the linear drive γL and the damping rate γd

are needed, especially if the system is close to marginal stability, where γ is sensitive
to small variations of driving and damping terms. For this class of instabilities, the
total growth rate can be estimated either by linear stability codes or by gyro- or drift-
kinetic perturbative nonlinear initial value codes. This approach requires internal diag-
nostics, whose accuracy is not enough for robust estimations, and which are not always
available. The global damping involves complicated mechanisms with details still un-
der debate. Experimentally, γd can be estimated by active measurements of externally
injected perturbations. However, the applicability of this technique is limited to dedi-
cated experiments, and this prevents robust linear predictions of the stability of AEs.
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Moreover, the existence of unstable AEs in a regime where linear theory predicts γ < 0,
or subcritical AEs, has not been ruled out. To access the subcritical regime, nonlinear
analysis is necessary.

This work is based on the following key point. Near the resonant surface, it is
possible to obtain a new set of variables in which the three-dimensional plasma is
described by a 1D Hamiltonian in two conjugated variables [2, 3, 4], if we assume
an isolated single resonance. In this sense, the problem of AEs is homothetic to a
simple 1D single mode bump-on-tail instability. The so-called Berk-Breizman (BB)
problem [5, 2, 3, 6] is a generalization of the bump-on-tail problem, where we take into
account an external wave damping accounting for background dissipative mechanisms
at a rate γd, and a collision operator. Analogies between BB and AE physics enables
more understanding of fully nonlinear problems in complex geometries by using a model
that is analytically and numerically tractable, as a complementary approach to heavier
3D analysis.

Our analysis is limited to AEs with repetitive frequency sweeping of the resonant
frequency, on a timescale much faster than the equilibrium evolution (chirping). Such
behavior has been observed in the plasma core region of tokamaks JT-60U, DIII-D,
START, MAST, NSTX, and in stellerators such as CHS. In most of the experiments,
the frequency chirps by 10-30%, in a quasi-periodic fashion, with a period in the order
of the millisecond.

In Sec. 2, we recall the equations of the BB model, and characterize the fully
nonlinear behavior in the whole (γd, νa) parameter space, where νa is a Krook collision
frequency, for a cold-bulk, weak warm-beam distribution. In addition to steady-state,
periodic and chaotic regimes, which are delimited in Ref. [7], chirping and subcritical
regions are delimited. In Sec. 3, we numerically investigate nonlinear chirping features.
In some regimes, we found that chirping events present a quasi-periodic behavior. In
Sec. 4, we apply BB theory to the TAE. Linear growth rates and collision frequencies
for JT-60U TAE experiments are estimated by fitting nonlinear chirping characteristics.

2. The Berk-Breizman model

For the sake of concision, and to avoid numerical treatment of too large and too small
numbers in simulations, we normalize time to the plasma frequency ωp, distance to
the Debye length λD, density to the initial total plasma density, and electric field to
qλD/(mv

2
th), where vth = λDωp, q and m are particle charge and mass, respectively.

We consider a 1D plasma with a distribution function f(x, v, t). In the initial
condition, the velocity distribution f0(v) comprises a cold Maxwellian bulk and a weak,
warm beam of high-energy particles. The evolution of the distribution is given by the
kinetic equation

∂f

∂t
+ v

∂f

∂x
+ E

∂f

∂v
= C(f − f0), (1)

where E is the electric field, and C(f − f0) is a collision operator. In this work, we
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consider either Krook operator,

CK(f − f0) = −νa(v) (f − f0) , (2)

and the one-dimensional projection of a Fokker-Plank operator [8], which includes a
dynamical friction (drag) term and a velocity-space diffusion term,

CFP(f − f0) =
ν2

f

k

∂ (f − f0)

∂v
+

ν3
d

k2

∂2 (f − f0)

∂v2
, (3)

where k is the wave number for the resonance.
In the expression of the electric field,

E(x, t) = Êk(t)eıkx + c.c., (4)

we assume a single mode of wave number k, reflecting the situation of an isolated single
mode AE. The displacement current equation,

∂E

∂t
= −4π

∫
v (f − f0) dv − 2 γdE, (5)

yields the time evolution of the wave. An external wave damping has been added to
model all linear dissipation mechanisms of the wave energy to the background plasma
that are not included in the previous equations [5]. In the collisionless limit, if we assume
a small perturbation and a linear growth rate γ much smaller than the real frequency
ω, linear calculations in the cold maxwellian limit yield the relation

γ = γL − γd, (6)

where γL is the linear growth rate in the absence of external damping. In this limit,
γL = γL0, where γL0 is a measure of the slope of initial distribution at resonant velocity,
γL0 ≡ (π ∂vf0|v=ω/k)/(2k2).

If the bulk particles interact adiabatically with the wave, their contribution to the
Lagrangian can be expressed as part of the electric field. Then it is possible to adopt a
perturbative approach, and to cast the BB model in a reduced form that describes the
time evolution of the beam particles only [9, 10]. We refer to this reduced model as δf
BB model. Compared to the full-f model, the δf model does not take into account ef-
fects of time-evolution of bulk particles, which is a caveat when assessing limit of theory
that breaks-up when phase-space structures approach the bulk, but it has an advantage
in the application to experiment, where we assume fixed mode structure, hence fixed
background plasma.

The apparent simplicity of the equation system of the BB model hides surprisingly
rich physics. In the unstable case, when the perturbation is small, linear theory predicts
exponential growth of the wave amplitude. Then the trapping of resonant particles
significantly modify the distribution function and an island structure appears. The
saturation and following nonlinear evolutions are determined by a competition among
the drive by resonant particles, the external damping, the particle relaxation which tends
to recover the initial positive slope in the distribution function, and particle trapping
that tends to smooth it. Four kinds of behaviors emerge, namely steady-state, periodic,
chaotic, and chirping responses, depending on the strength of each factor.
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Figure 1. Behavior bifurcation diagram for a cold bulk, weak warm beam distribution.
The classification of each solution is plotted in the (γd, νa) parameter space. The solid
curve is the linear stability threshold obtained by solving the linear dispersion relation
numerically. Diamonds and triangles on the right of the linear stability threshold,
which are not included in the legend, represent subcritical instabilities.

In Ref. [11], we developed kinetic codes capable of long-time simulations of δf
and full-f BB model in various parameter regimes. We refer to these codes as δf
COBBLES and full-f COBBLES, respectively, COBBLES standing for COnservative
Berk-Breizman semi-Lagrangian Extended Solver. We perform a series of full-f
COBBLES simulations with Krook collisions, in the whole (γd, νa) parameter space.
The initial bump-on-tail distribution parameters are chosen such that we stay within
the validity limit of BB theory, with a cold bulk and a weak warm beam. The
characterization of the behavior of the wave amplitude obtained in our simulations
is shown in Fig. 1.

Note the agreement between linear stability threshold and the boundary between
linearly stable and unstable simulations. For small collision rates, we observe instabilities
in the linearly stable region, which suggests the possibility of subcritical instabilities.

3. Nonlinear features of chirping

Chirping solutions arise in a low collision regime when hole and clump structures [2]
are formed in phase-space. They belong to a chaotic regime, and each chirping event is
slightly different. In this work, we are interested in the nonlinear chirping characteristics,
averaged over a significant number of chirping events.

In Ref. [12], the time-evolution of the frequency shift is obtained, in the collisionless
limit, as

δω(t) = α γL0

√
γd t, (7)
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with α ≈ 0.44. These analytic expressions have been found to agree with 1D simulations
of both δf and full-f BB model, [11, 12], with both Krook and diffusion-only collision
operators. In Sec. 4, we consider a regime with relatively fast sweeping, ˙δω/ω2

b ≈ 0.5,
where ωb ≡ (k|Ek|)1/2 is the bounce frequency. In this regime, it is necessary to introduce
the effect of non-adiabaticity on chirping velocity as a correction parameter β, defined
as

β ≡ δω(t)

α γL0

√
γd t

. (8)

A numerical investigation confirms that β approaches unity in a regime of adiabatic
hole/clump evolution. Even for relatively large values of ˙δω/ω2

b , the chirping velocity
has a smooth dependency on the kinetic parameters [13]. The latter point is crucial for
the validity of the procedure described in Sec. 4.

The resonant velocity of a hole (a clump) does not increase (decrease) indefinitely.
We define the life-time τ of a chirping event as the time in which the corresponding
power in the spectrogram decays below a fraction e−2 of the maximum amplitude that
is reached during this chirping event. The maximum life-time τmax reached by τ during
a time-series, ignoring the first chirping event and any minor event, follows

τmax =
ιa
νa

, (9)

in the Krook case, where ιa is a constant, which we evaluate by fitting numerical
simulations, as ιa = 1.1. In the case with drag and diffusion, τmax scales like

τmax ∼
γ2

L0

ν3
d

, (10)

when νf � νd, only for low collisionality. For higher collisionality, diffusion affects the
width of a hole or clump during the first phase of their evolution, namely drive by free-
energy extraction, which in turn affects the decay by diffusion. Since chirping observed
in experiments belongs to this regime, we adopt a semi-empirical law obtained by a
linear fit of numerically obtained life-time,

τmax = ιd

(
γ2

L0

ν3
d

)0.5

, (11)

with ιd = 10.

As long as the background plasma parameters are not significantly changed,
chirping events in most tokamak experiments are quasi-periodic, with a quiescent
phase between two chirping branches that lasts a few milliseconds. In some parameter
regimes, chirping arising from the BB model with Krook collisions is also quasi-periodic,
although the phase between two major chirping events is generally not as quiet as in the
experiments. In a regime where νf � νd, chirping arising from the BB model with drag
and diffusive collisions is quasi-periodic too, but this time with clear quiescent phases
in-between chirping events. In both case, no analytic theory has been developed to
predict the average time between two chirping events, ∆tchirp. However, conceptually,
there exists some relation with a subset of the input parameters. Thus, if we normalize
time with the mode frequency, then chirping velocity, life-time and period are dictated
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Figure 2. (a) Spectrogram of magnetic fluctuations during fast-FS modes in the
JT-60U discharge E32359. (b) Spectrogram of the electric field, where the kinetic
parameters of the δf BB model with friction-diffusion collisions were chosen to fit (a).
Solid curve shows the analytic prediction for the chirping velocity. (c) Evolution of
the amplitude of perturbations during a single chirping event. The signal is filtered
between 40 and 65 kHz. In these arbitrary units, 10−3 roughly corresponds to a noise
level.

by the input parameters of the model, γL0, γd, and νa, or νf and νd. With drag and
diffusion, we have a 4-variables, 3-equations system, hence the solution is not unique,
but the boundaries of chirping regime limit the possible range of input parameters.

4. Spectroscopic analysis of chirping TAEs on JT-60U

In JT-60U, TAEs are destabilized by a negative ion based neutral beam (N-NB), which
injects deuterons at 360 keV. A distinction is made between so-called abrupt large-
amplitude events (ALE) and fast frequency sweeping (fast-FS) [14]. Here, we focus on
the latter phenomenon, which has a timescale of 1 − 5 ms. In the discharge E32359,
around t = 4.2 s, quasi-periodic, perturbative chirping frequency sweeping modes
are observed. They have been identified as m/n = 2/1 and 3/1 TAEs [15]. In the
spectrogram, which is shown in Fig. 2(a), we measure a mode frequency fA = 53 kHz,
to which we re-normalize time in our simulations. We also measure the average chirping
velocity dδω2/dt = 6.3 × 10−5, the maximum chirping life-time τmax = 0.44 × 103, and
the average chirping period ∆tchirp = 3× 103 (on average).

The analysis described here aims at estimating the values of γL0, γd, νf and νd for
which the δf BB model fits experimental observations. The comparison is possible if
we consider a time interval where background plasma parameters are not significantly
changed, since a fixed mode structure is assumed to reduce the problem to a one
dimensional Hamiltonian. We also assume that frequency shifting occurs well within
the gap of the Alfvén continuum, so that chirping lifetime is determined by collision

6



Estimation of Kinetic Parameters based on Chirping Alfvén Eigenmodes THW/P7-11

processes, rather than by continuum damping. Here we focus on collision operators
with drag and diffusion, since an attempt to fit experiments within the framework of
Krook collisions yielded unconvincing results.

Eqs. (8) and (11) give two relations between linear drive, external damping, and
velocity-diffusion coefficient. On the one hand, it is shown in Ref. [8] that for typical
NBI-heated experiments, the ratio νd/νf is of the order of unity. On the other hand,
a numerical exploration of chirping regimes with drag and diffusion suggests that when
νf ≥ νd, the drag significantly modifies the shape of chirping, to the point where we
leave the regime of repetitive chirping. Thus the relevant regime for friction is νf . νd.
In this regime, ∆tchirp increases with decreasing νf , γ, and increasing νd. Our fitting
procedure consists of a 2D scan in (νf , νd), where we search for solutions that fit the
chirping period. If the experiment belongs to a regime where β = 1, the above procedure
is systematic. In general, β 6= 1, and trial-and-errors are required to adjust chirping
velocity to the experimental value.

We perform a first, rough scan, assuming β = 1. Measuring average chirping
velocity in repetitive chirping solutions yields an estimation of the correction parameter,
β = 0.75. We perform a second, more careful scan, which consists of a series of
4 × 8 simulations in the domain (0.015 ≤ νd ≤ 0.022, 1 ≤ νd/νf ≤ 8), where γL0

and γd are constrained by Eqs. (8) and (11). The only repetitive chirping solution
with 2500 < ∆tchirp < 3500 we found is shown in Fig. 2(b). We verify that chirping
features measured in this simulation, dδω2/dt = 7.1× 10−5 (6.2× 10−5 for up-chirping,
7.9× 10−5 for down-chirping), τmax = 0.45× 102 (0.47× 102 for up-chirping, 0.43× 102

for down-chirping), and ∆tchirp = 3.1 × 103, fit the experiment. The estimated linear
parameters, in percentage of ωA = 2πfA, are γL0 = 9.8%, γL = 8.8%, γd = 4.7%,
νf = 0.36%, νd = 1.7%, and γ = 4.6%. In theory, the solution is not unique, but
the latter estimation is quite accurate because of the narrow range of periodic chirping
regime. To validate this analysis, we compare the amplitude of perturbations in Fig. 2
(c). Since the growth rate of chirping structure is neither γ nor γL, and the decay rate
not simply γd, but a function of several linear parameters, the agreement we obtain is
not trivial (We measure a growth rate of 2.3%, and a decay rate of 0.3%).

For further validation, we estimate the values of νf and νd, by projecting a Fokker-
Planck collision operator on the resonant surface [8]. This procedure yields νf = 1.2%
and νd = 1.7%. Note that electrons account for 99% of ν2

f , which reflects a high Alfvén
velocity, while impurities account for 57% of ν3

d , which is consistent with the fact that
pitch-angle scattering is more effective with heavier particles. We find a quantitative
agreement for νd. However, with our fitting procedure, νf was underestimated by 70%.
Though error bars in the experimental data may account for this discrepancy, it is also
possible that our model misses some mechanism that would enhance the friction.

5. Conclusion

We delimited a chirping regime in both supercritical and subcritical regions. We showed
that chirping velocity agrees with theory in a regime of adiabatic hole/clump evolution.
In a low collisionality limit, the chirping life-time scales like analytic predictions, and we
gave a semi-empirical law that fits life-time measured in simulations for experimental-
level collisions.
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We showed that the BB model can successfully reproduce features observed in
the experiment if the collision operator includes drag and diffusion terms. In this
case, we find a good agreement between simulation and measured growth and decay
of perturbation amplitude. The velocity-diffusion coefficient obtained with our fitting
procedure quantitatively agrees with an estimation from experimental equilibrium
measurements. Note that major advantages of our fitting technique are 1. kinetic
parameters in the core of the plasma estimated only from the spectrogram of the
magnetic fluctuations measured at the edge, without expensive MHD calculations nor
detailed core diagnostics, and 2. unified treatments of supercritical and subcritical AEs.
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