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Abstract. The near-threshold regimes of wave excitation by energetic particles reveal a rich family of nonlinear 
scenarios ranging from benign mode saturation to explosive behaviour. The choice between these scenarios 
depends on relaxation processes that restore the unstable distribution function. Our recent analysis shows that 
only the explosive behaviour is possible when drag dominates at the wave-particle resonance. As a result, the 
instability follows a ‘hard’ non-linear scenario in which the saturation level is insensitive to the initial growth 
rate. The explosive nonlinear regimes produce phase space holes and clumps. In previous work, description of 
such structures was limited to the case of small frequency deviations from the bulk plasma eigenfrequency. 
However, there are many observations of frequency sweeping events in which the change in frequency is 
comparable to the frequency itself. The need to interpret such phenomena requires a non-perturbative theoretical 
formalism, which this new work provides. The underlying idea is that coherent structures represent travelling 
waves in fast-particle phase space. A rigorous solution of this type is obtained for a simple one-dimensional 
model. This model captures the essential features of resonant particles in more general multidimensional 
problems. The presented solution suggests an efficient approach to quantitative modelling of actual experiments.  
 
 
1. Bump-on-tail model and basic equations 
 
Energetic particle instabilities in fusion plasmas usually involve wave-particle resonances. 
This naturally puts a spotlight on resonant particles in the related theoretical studies. The key 
aspects of resonant particle behavior are rather general, and they can be understood within a 
simple one-dimensional bump-on-tail model that exhibits the characteristic nonlinear 
scenarios [1] This model captures the essential features of resonant particles in more general  

multidimensional problems, because particle motion is known to be effectively one-
dimensional in the vicinity of an isolated nonlinear resonance, once expressed in proper 
action-angle variables [2]. The bulk plasma is represented by cold electrons in the bump-on-

 
  FIG. 1. Unstable bump-on-tail distribution function (left) and particle phase space plot (right). 



2                              
                                      THW/P7-02 
tail model, and the model includes sources and sinks that create an unstable energetic electron 
tail. The tail provides an instability drive γ L  due to positive slope of its velocity distribution 
function F  (see FIG. 1). The unstable mode is a plasma wave, and its eigenfrequency, ω p , 
is the electron plasma frequency. The cold electron collision frequency νcold  provides a 
linear damping rate γ d = νcold / 2 that determines the instability threshold (the minimum slope 
of F(u)  needed to excite a mode). The spectrum of energetic-particle-driven Alfvén modes 
in a tokamak is typically discrete due to periodicity in the toroidal and poloidal directions and 
the radial boundary conditions. In order to take that into account in the bump-on-tail model, 
we consider a single electrostatic mode with a given wavelength λ  and wavenumber 
k = 2π / λ . The electric field of the mode can then be written as 
  

 
  
E =

1
2

Ê(t)exp(ikx − iω pt) + c.c.⎡⎣ ⎤⎦ , (1) 

where  Ê(t) is slowly varying complex amplitude. The basic equations for the bump-on-tail 
problem are the kinetic equation for the energetic electrons and the wave evolution equation 
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where angular brackets denote averaging over wavelength. The right hand side of the kinetic 
equation describes three different collision models for the resonant tail electrons: velocity 
space diffusion, drag, and Krook-type collisions. The characteristic rates for these collisions 
are characterized by the quantities ν , α , and β , respectively. The collision operator also 
includes a source term that sets up an equilibrium distribution function F0  in the absence of 
the wave field. The appropriate collision operator for the problem is determined by what 
collisional process is dominant at the wave-particle resonance in phase space. For fast ions in 
a tokamak, Coulomb collisions can be described as a combination of pitch angle scattering 
and electron drag. The former can be represented by a diffusive operator, while the latter 
introduces a slowing down operator to the kinetic equation.  
 
2. Weakly nonlinear near-threshold dynamics 
 
The near-threshold regime of wave excitation makes it possible to expand the perturbed 
distribution function F  in powers of the wave amplitude Ê  and solve the kinetic equation 

iteratively. The actual expansion parameter is ωBt , where ωB ≡ e Ê k / m  is the bounce 
frequency of the resonant particles, and t  is the time interval of interest. The first term in the 
power series for F  gives the linear instability drive γ LÊ  in the wave equation (3).  The 
difference between γ L  and γ d is small in the near threshold limit, which allows the lowest 
order nonlinear correction to compete with this difference. It follows from the expansion 
procedure that the nonlinear correction to the wave growth rate scales as γ L (ωBt)

4  whereas 
the linear growth rate itself is γ L − γ d << γ L . Consequently, the lowest order nonlinearity 
becomes important when (ωBt)

4 ≈ (γ L − γ d ) / γ L << 1 . At this level, the next-order nonlinear 
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term, γ L (ωBt)

8 , is still negligible. Thus, the inequality (γ L − γ d ) / γ L ≤ (ωBt)
4 << 1  defines a 

window in which the dynamics are already nonlinear but the nonlinearity can still be treated 
perturbatively. The ensuing relation between the perturbed distribution function and the wave 
field involves a sequence of time integrations. Once this relation is used in Eq. (3), we obtain 
a cubic integro-differential equation for the wave amplitude, which can be written in the 
following dimensionless form: 
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The amplitude A  in this equation is defined as A = (eÊk / m) γ L / γ d −1( )−1/2 γ L − γ d( )−2 , the 
dimensionless time is τ = γ L − γ d( )t  and the normalized relaxation rates are defined 

as ν̂ ≡ ν / (γ L − γ d ) , α̂ ≡ α / (γ L − γ d ) , and β̂ ≡ β / (γ L − γ d ) .  The cubic nonlinear equation 
(4) was originally derived in Refs. [1, 3] for the diffusive and Krook-type collisions, and it 
has been generalized in Ref. [4] to include the effect of drag. Equation (4) determines 
whether the initial linear instability evolves into a soft or hard non-linear regime. The 
amplitude A  saturates at a finite level in the soft case, whereas the hard case gives a solution 
that `explodes' in a finite time. In the absence of drag (α̂ = 0 ), Eq. (4) admits a saturated 

solution in which A 2 = 2 z2dz
β̂ + ν̂ 3z20

∞

∫ exp −2ν̂ 3z3 / 3− 2β̂z( )⎡
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⎤

⎦
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−1

at τ → ∞ , and the amplitude 

indeed converges to that solution, but only when the annihilation rate ( β̂ ) and/or diffusion 
rate ( ν̂ ) is sufficiently large. At smaller values of β̂  and ν̂ , the steady saturated solution is 
unstable, which gives rise to a periodic limit-cycle behaviour known as “pitchfork splitting”. 
Further decrease of the relaxation rates creates period doubling bifurcations and then leads to 

a chaotic mode amplitude evolution and to 
explosive growth of the mode. The details of 
these transitions can be found in Refs. [1, 5]. 
The same Eq. (4) also shows that the mode 
evolution is always explosive in the case of 
pure drag ( β̂ = ν̂ = 0 ). The cubic nonlinear 
term in the equation is destabilizing in this 
case. Because of that, Eq. (4) does not have 
any saturated solution at ( β̂ = ν̂ = 0 ), and the 
mode grows beyond the applicability range of 
Eq. (4). In presence of both drag and 
diffusion, the existence of steady saturated 
solutions is only prohibited when the integral 
in Eq. (4) has a negative real part at τ → ∞ , 
which takes place at ν̂ / α̂ < 1.043  (as marked 
by the dashed line in figure 13). However, 
some of the steady solutions that formally 
exist at ν̂ / α̂ > 1.043  are in fact unstable [4]. 
The stability boundary is shown in FIG. 2 by 

 

 
FIG. 2. The boundaries in parameter space 
that give stable, unstable and no steady state 
solutions to Eq. (4). The unstable solution lies 
in between the solid and dashed lines. 
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the solid line. The area above the solid line represents stable steady solutions. A distinctive 
feature of the explosive scenario is that the nonlinear growth rate of the wave in this regime is 
much greater than both the total linear growth rate γ = γ L − γ d  and the collisional relaxation 
rates of energetic particles. This rapid growth continues until the wave amplitude reaches the 
level of ωB ≈ γ L , at which point Eq. (4) looses its accuracy. The subsequent dynamics is 
governed by the fully nonlinear Eqs. (2) and (3). Their numerical solution in Ref. [6] has 
revealed formation of long-living coherent structures with time dependent frequencies (phase 
space holes and clumps). The next two sections present recent progress in the studies of such 
structures. 
 
3. Phase space holes and clumps 
 
The tendency for the mode frequency to change in the strongly nonlinear regime is already 
seen in the explosive solution of Eq. (4). The point is that the explosive solution is 
oscillatory, and the period of oscillations in the wave amplitude A  shortens as the solution 
approaches the singularity. This nonlinear modulation of the growing wave suggests that the 
wave tends to split into upshifted and downshifted sidebands. The fully nonlinear set of Eqs. 
(2), (3) apparently prevents the mode from growing indefinitely (because of the energy 
conservation constraint). However, the trend for frequency sweeping continues, as found in 
Ref. [6]. There is a strong correlation between the frequency sweep and the evolution of the 
spatially averaged particle distribution function that exhibits an upward moving depletion 
(hole) and a downward moving protrusion (clump). The hole and clump represent resonant  

particles trapped in the field of the upshifted 
and downshifted waves, respectively. Unlike 
the very fast explosive formation of holes and 
clumps, their subsequent evolution takes place 
over many bounce periods of the trapped 
particles, so that these particles respond to the 
wave field adiabatically. Conservation of the 
adiabatic invariant preserves the value of the 
trapped particle distribution function. A 
schematic snapshot of the distribution function 
in FIG. 3 shows that the particle kinetic energy 
decreases when the hole and clump move 
away from the original resonance with the 
constant values of the distribution function at 
the bottom of the hole and the top of the 

clump. This energy release balances the dissipation in the background plasma to allow the 
wave last over hundreds of linear damping times. As shown in Ref. [6], each hole and clump 
represents a nonlinearly saturated wave with  
 
 

  
ω B = 16 / 3π 2( )γ L  (5) 

and with the following square-root time-dependence for the frequency shift in the absence of 
fast particle collisions: 
 
 

  
δω = 16 / 3π 2( )γ L 2γ dt / 3 . (6) 

More recent simulations with improved computational accuracy [7] reveal that holes and 

 

 
FIG. 3.  Adiabatic motion of hole and clump 
releases kinetic energy of the energetic 
particles  
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clumps are produced continuously in the collisionsless case. This occurs due to the ‘wake’ 
that forms when a hole or clump detaches from the original resonance. Referring to FIG. 3, 
since the particle number is conserved, the motion of a hole or clump leads to slight excess 
behind a hole and depletion behind a clump. There is thus a tendency for the slope of the 
distribution function to steepen, making the system susceptible to recurrent instability.  

 
The presence of drag and velocity space 
diffusion adds interesting new features to the  
behaviour of holes and clumps [7]. The drag 
alone breaks the symmetry of the sweeping 
pattern.  The source term in the drag 
collision operator acts to enhance a phase 
space hole and weaken, or even suppress, a 
phase space clump. Also, the combined 
effect of drag and velocity space diffusion 
can produce a repetitive pattern of hooked 
frequency chirping shown in FIG. 4. The 
effects of drag and diffusion on a single hole 
can be illustrated by a simple set of coupled 
nonlinear differential equations derived and 
examined in Ref. [7]: 

 
 δωωB = (16 / 3π

2 )γ Lg  (7)

 (3π 2 / 48)ωB
3 = g α 2 + dδω / dt( )  (8) 

 
dg
dt

+
ν 3

1.84 3π 2 / 48( )2 /3ωB
2
g = α 2 +

d
dt
δω  (9) 

The functions to be found from this set are ωB , δω , and g , where ωB  (the resonant 
particle bounce frequency) determines the wave amplitude, and the width of the hole, δω  is 
the mode frequency shift, and g  characterizes the hole depth. The first two equations 
represent the wave dispersion relation and the energy balance conditions. The last equation 
describes a competition between the hole deepening due to drag and frequency sweeping and 
the hole filling via velocity space diffusion. The solution of Eqs. (7)-(9) exhibits the same 
qualitative trends as the results of full-scale simulations, including reproduction of the hooked 
spectra.  
 
4. Long-range frequency sweeping 
 
The initial theory for phase space holes and clumps was limited to the case of small frequency 
deviations from the bulk plasma eigenfrequency [6].  However, there are multiple 
experimental observations of frequency sweeping events in which the change in frequency is 
comparable to the frequency itself [8-10]. Interpretation of such dramatic phenomena requires 
a non-perturbative theoretical formalism. Given that the energetic particle density is usually 
much smaller than the bulk plasma density, it seems difficult for these particles to change the 
eigenmode frequency significantly. The way to resolve this difficulty is to take into account 
that a small but coherent group of energetic particles can still produce an observable signal 
with a frequency different from the bulk plasma eigenfrequency. A relevant example is a 

 

 
FIG. 4. Hooked frequency spectrum of holes 
and clumps represents interplay   of drag and 
diffusive collisions. 
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modulated beam in the plasma. The initial modulation occurs spontaneously at the plasma 
eigenmode frequency. However, as the coherent structure evolves due to dissipation, the 
trapped particles slow down without losing coherency, and the resulting frequency shifts 
considerably from the initial frequency. The corresponding theoretical building block is then a 
nonlinear Bernstein-Greene-Kruskal (BGK) mode [11]. In Ref. [12], a rigorous solution of 
this type has been obtained for a bump-on-tail model with the following form of the perturbed 
electrostatic potential ϕ : 

 ϕ ≡ −
1
e
U x − s(t);t[ ] , (10) 

 
where e

 

is the electron charge, and the electron potential energy U  is a periodic function 
of its first argument x − s(t)[ ]  and a slowly varying function of the second argument t . 
Also, the wave phase velocity  s ≡ ds(t) / dt  is a slowly varying function of time with a 
sweeping rate  s . The perturbed cold electron density is linear in ϕ  whereas the perturbation 
of the fast electron tail is nonlinear, dominated by adiabatic response of the trapped particles. 
Evaluation of this nonlinear response involves the notion that the electron distribution 
function is nearly uniform within the trapped particle phase space area and that the ambient 
passing particles remain unperturbed. The resulting Poisson equation for the BGK mode has 
the form 
 

      
 

∂2U
∂z2

= −
Uω p

2

s2
− 8πe2 F0 ( s0 ) − F0 ( s)[ ] 2

m
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
Umax −U( ) − Umax −U( )⎡

⎣⎢
⎤
⎦⎥ ,(11) 

 
where  z ≡ x − s(t) ,  s0 is the initial phase velocity of the wave, and angular brackets denote 
averaging over the spatial period λ . The maximum value, Umax , of the potential energy is 
related to  s  by solvability condition for Eq. (11). Equation (11) gives the following 
structure for the BGK mode [12]: 
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2
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3mω p
2 cosα
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⎫
⎬
⎪
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α ≡ ω pλ / 4 s

(12) 

 
For small deviations of  s from  s0 (early phase of frequency sweeping), Eq.(12) reproduces 
the result of Ref. [6]. On the other hand, Eq. (12) shows that the amplitude and the mode 
structure change significantly for larger variations of  s .  As a result, the boundary 
(separatrix) between the passing and trapped particles changes its shape as shown in FIG. 5. 
The separatrix shrinks and releases some of the originally trapped particles. The particles that 
remain trapped move to lower velocities and supply energy to the wave. The power extracted 
from the fast particle population is 
  

 
 
 P = − F0 ( s0 ) − F0 ( s)[ ]2ms2λ

32πe2 s F0 ( s0 ) − F0 ( s)[ ]
3mω p

2 cosα
sinα
α

− cosα⎡
⎣⎢

⎤
⎦⎥
ds
dt

 (13) 

 
and the balance between this power and the power dissipated in the bulk plasma determines the 
rate of sweeping needed to compensate for collisonal dissipation of the BGK-mode. 
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Early in time, the power balance condition 
reproduces the square root scaling given by 
Eq. (6). Later in time, the mode phase 
velocity  s  deviates gradually from this 
simple scaling. This evolution can be viewed 
as transformation of the initial plasma wave 
into an energetic particle mode.  It also 
presents a plausible scenario for energetic 
particle modes generated by Alfvén wave 
instabilities [13-15], for which nonlinear 
modification of the mode structure is 
essential. 
 
The presented consideration of the 1-D 
electrostatic bump-on-tail problem suggests 
a similar approach to the frequency 
sweeping events in tokamaks.  
Experimentally, such events can be 
attributed to the resonant excitation of 
toroidal Alfvén eigenmodes. For a linear 
mode, the resonance condition has the form 

 
 ω − nωϕ (Pϕ ;Pθ ;Pψ ) − lωθ (Pϕ ;Pθ ;Pψ ) = 0 ,  (14) 
 
where ω is the mode frequency, ωϕ (Pϕ ;Pθ ;Pψ )  and ωθ (Pϕ ;Pθ ;Pψ )  are the toroidal and  
poloidal transit frequencies, and n and l are integers. The pairs (Pϕ ;ϕ ), (Pθ ;θ ), and (Pψ ;ψ ) 
are the canonical action-angle variables for the integrable unperturbed motion. The third pair 
(Pψ ;ψ ) describes fast gyro-motion that does not resonate with shear Alfvén perturbations. For 
an isolated linear resonance, the perturbed particle Hamiltonian is a sinusoidal function of 
ωt − nϕ − lθ . Similarly to the bump-on-tail problem, transition to the nonlinear case 
generalizes the Hamiltonian to 
 

 H = H0 +U ω
0

t

∫ τ( )dτ − nϕ − lθ;t
⎛

⎝⎜
⎞

⎠⎟
, (15) 

 
where the function U  (to be determined numerically) is still periodic (but not necessarily 
sinusoidal) function of its first argument. We now note that the quantities Pψ  and 
P = lPϕ − nPθ are constants of motion for such Hamiltonian and that slow evolution of the 
function U  should also preserve an adiabatic invariant for trapped particles. These three 
conservation laws establish a simple relationship between the trapped particle distributions at 
any two locations of the resonance (see FIG. 6). 

 
FIG. 5.  Evolution of the phase-space bucket 
during sweeping event. The plot shows the initial 
separatrix (upper shaded area) and the shrinked 
separatrix at half of the initial mode phase 
velocity (lower shaded area). 
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 Any macroscopic quantity, 
like perturbed energetic particle 
pressure, now becomes a 
known functional of the 
unperturbed distribution and 
the “potential energy profile” 
U .  What remains to be 
solved (numerically) is a set of 
linear MHD equations for bulk 
plasma response with an 
analytic nonlinear input from 
the energetic particles. These 
equations represent an analogue 
of Eq. (11), and their solution 
determines the wave profile 
U . After that, the power 
balance condition can be used 
to calculate the frequency-
sweeping rate.  
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FIG. 6.  Transport of resonant particles during frequency 
sweeping. The coloured areas are snapshots of the moving 
resonant region in the momentum space. The colours mark 
different values of the particle distribution function. The 
trapped particles form a locally flat distribution across the 
resonance and preserve the value of their distribution function 
when the resonance carries them along the dashed lines. 
 


