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Three-mode coupling due to magnetohydrodynamic (MHD) nonlinearity is studied for
the understanding of saturation mechanism of the Alfvén eigenmode that is destabilized
by energetic particles. An analytic expression of the coupling coefficient among ideal
MHD eigenmodes is derived in a general manner, which quantifies the effectiveness of the
nonlinear mode coupling (such as the parametric decay rate). This formulation is worked
out by extending the MHD Lagrangian theory to nonlinear regime and, for the first time,
enables the analysis of the global mode coupling in real geometry. The coupling coefficient
is written in terms of the linear displacement vector field, so that it can be analytically
and numerically evaluated by utilizing the existing linear stability theories and methods.

1 Introduction

The nonlinear saturation level of the Alfvén eigenmodes (AEs) that is driven by the
resonant alpha particles is of significant concern to future magnetic fusion reactor. As for
AEs driven by energetic particles and antennas, the recent experiments [1, 2] observe the
coupling among three eigenmodes ωa = ωb +ωc or harmonics ωa = 2ωb, which implies that
the associated energy transfer can be one of the saturation mechanisms depending on its
efficiency. The second harmonic generation [1] is roughly estimated by the quadratic terms
of the MHD equations [3]. In this paper, we propose a novel technique to analyze such
three (or two) mode interactions induced by the weak MHD nonlinearity and provides a
more detailed estimation of the saturation level.

Although the coupling among plane waves or wave packets has been well studied in
plasma physics [4, 5], generalization of this “three-wave” theory to global eigenmodes
in nonuniform equilibria (like tokamaks) is highly complicated and requires an extensive
algebra since the local wavenumber vector k is no longer usable for such non-local os-
cillations. In this work, we first derive a general weakly-nonlinear equation of motion
by developing the Lagrangian theory [6, 7] of ideal MHD, which leads to the amplitude
equations of resonant three eigenmodes with the Manley-Rowe symmetry. In contrast
to earlier work [8], we can express the coupling coefficient in terms of only the linear
displacement vector field. By substituting the AE eigenfunctions into the expression, the
energy transfer among the three eigenmodes can be evaluated in a systematic way.

2 Extension of the Lagrangian displacement to nonlinear regime

In this section, we develop a method for solving nonlinear fluctuations based on the
Lagrangian formalism of the ideal MHD equations [6]. By adopting an appropriate per-
turbation expansion of the MHD Lagrangian and invoking Hamilton’s principle, we will
arrive at a weakly-nonlinear equation of motion for the displacement field, which serves
as a natural extension of the well-known linearized equation [9].

Let V ⊂ R3 be a domain filled with ideal plasma. For simplicity, we assume that V
is surrounded by a rigid ideal wall. Although most experimental devices have vacuum
regions between plasmas and walls, we need not consider such free boundary problems
in this work since we are concerned with internal modes which tend to evanesce at the
plasma surface.
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In the Lagrangian description of fluids, the dynamical variable is represented by a
map x(t; x0) ∈ V , which denotes the position of an infinitesimal fluid element (or “fluid
particles”) at time t that leaves an initial position x0 ∈ V at t = 0. Given such a fluid
motion, the Eulerian velocity field v(x, t) is defined by dx/dt = v(x, t), and the ideal
MHD equations for the magnetic field B, the mass density ρ and the specific entropy s
claim that these quantities are frozen to each fluid element.

Now, we consider a perturbed fluid motion; x(t) → x(t) + Ξ(x(t), t), where Ξ(x, t)
denotes the displacements of orbits. Since it is generally difficult to solve the full-nonlinear
evolution of Ξ(x, t), we resort to a perturbation method. In this work, an arbitrary small
parameter α(� 1) is used to measure the amplitude of displacement, and the perturbation
expansion is performed in the following specific manner.

x + Ξ =(eαξ·∇)(x) = x + αξ +
α2

2
ξ · ∇ξ +

α3

6
ξ · ∇(ξ · ∇ξ) + . . . , (1)

which means that the nonlinear displacement map Ξ is generated by a displacement
vector field ξ(x, t); ∂Ξ/∂α = ξ(x + Ξ, t). The boundary condition is n · ξ = 0 at
∂V . The outstanding feature of this way of expansion is that the perturbed state ũ
of all MHD variables u = (v, B, ρ, s)T can be expressed by the Lie series expansion,
ũ = u + αδξu + (α2/2)δξδξu + (α3/6)δξδξδξu + . . . , where an operator δξ is defined by

δξu =


δξv
δξB
δξρ
δξs

 =


∂tξ + v · ∇ξ − ξ · ∇v

∇× (ξ × B)
−∇ · (ρξ)
−ξ · ∇s

 , (2)

and enjoys the property of the Lie derivative (such as the Jacobi identity).
The MHD Lagrangian density [6] is a function of the Eulerian variables u,

L(u) =
ρ

2
|v|2 − 1

2
|B|2 − ρU(ρ, s), (3)

where U(ρ, s) denotes the internal energy per unit volume. The Lagrangian evaluated at
the perturbed state is therefore expanded with respect to α as follows.

L̃ =

∫
V

L(ũ)d3x =

∫
V

(
L + αδξL +

α2

2
δξδξL +

α3

6
δξδξδξL + O(α4)

)
d3x, (4)

where δξ acts on a functional L(u) like δξL = DuL ·δξu with Du representing the functional
derivative. Let the unperturbed state u = (v,B, ρ, s)T be a given equilibrium state. Since
it is an exact solution of the MHD equations, the O(α)-term δξL vanishes as shown by
Newcomb [6]. After some manipulation, we can express the Lagrangian (4) as follows.

L̃ =

∫
V

{
L +

α2

2
l(2)(ξ, ξ) +

α3

6

[
3l(2)(ξ · ∇ξ, ξ) − w(3)(ξ, ξ, ξ)

]
+ O(α4)

}
d3x. (5)

Here, the symmetric quadratic form, appearing in the O(α2)-term,

l(2)(ξ, η) := ρ
Dξ

Dt
· Dη

Dt
− w(2)(ξ, η) for ∀ξ,η

corresponds to the Lagrangian density for the linearized system [7], where D/Dt = ∂t +
v · ∇ and the potential energy is

w(2)(ξ, η) :=Bξ · Bη + η · [(ξ · ∇)∇P ] + ρc2
s(∇ · ξ)(∇ · η) + (∇ · ξ)η · ∇P

+ (∇ · η)ξ · ∇P. (6)
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An operator B is defined by Bξ := B · ∇ξ − (∇ · ξ)B, and P = p + |B|2/2 denotes
the total pressure and c2

s = ∂p/∂ρ the sound speed. Hence, the extremum condition,

δ
∫ t2

t1

∫
V

l(2)(ξ, ξ)d3xdt = 0, up to O(α2) recovers the well-known Frieman-Rotenberg (FR)

equation ρD2ξ/Dt2 = Fξ [9].
As displayed in (5), we have derived the 3rd-order potential energy w(3)(ξ, ξ, ξ) which

can be written in the following form with cubic symmetry,

w(3)(ξ, η, ζ) := −(∇ · ξ)Bζ · Bη − (∇ · η)Bζ · Bξ − (∇ · ζ)Bξ · Bη

+ ∇ · (ζ · ∇ξ − ζ∇ · ξ)δηP + ∇ · (ζ · ∇η − ζ∇ · η)δξP

+ ∇ · (ξ · ∇η − ξ∇ · η)δζP

+ (∇ · ξ)η · (ζ · ∇)∇P + (∇ · ζ)η · (ξ · ∇)∇P + (∇ · η)ξ · (ζ · ∇)∇P

+ ηζξ : ∇∇∇P −
(

ρ2 ∂2p

∂ρ2
+ 2ρc2

s

)
(∇ · ξ)(∇ · η)(∇ · ζ). (7)

for all ξ,η, ζ, where the perturbation of the total pressure is given by δξP = δξp+B·δξB =
B · Bξ − ξ · ∇P − ρc2

s∇ · ξ. It follows that we can derive a weakly nonlinear equation of

ξ by invoking Hamilton’s principle δ
∫ t2

t1
L̃dt = 0 up to O(α3);

ρ
D2Ξ

Dt2
−FΞ − 1

2
F (2)(Ξ,Ξ) = O(α3), (8)

where Ξ = αξ+(α2/2)ξ ·∇ξ+O(α3), and the quadratic force F (2) is uniquely determined
by −w(3)(ξ, ξ, δξ) = δξ · F (2)(ξ, ξ) + ∇ · [−2(δξ · ∇ξ)δξP ]. This is a natural extension of
the FR equation to nonlinear regime.

3 Nonlinear three-mode interaction

Various nonlinear mode couplings can be discussed by studying the properties of the
quadratic force term F (2) or the associated potential energy w(3). Following the weak
turbulence theory, let us naively assume that the solution of (8) takes a form of

αξ =
∑

j

[Cj(t)ξ̂je
−iωjt + c.c.] (9)

where ωj and ξ̂j are, respectively, the eigenvalues and eigenfunctions of the FR equation,
and the slow variation of the amplitudes Cj(t) [dCj/dt � ωjCj] accounts for weakly
nonlinear coupling among the eigenmodes. The amplitude equations may be written as

dCj

dt
=

∑
j′,j′′

Ŵ
(3)
jj′j′′Cj′Cj′′δ(ωj + ωj′ + ωj′′), (10)

where Ŵ
(3)
jj′j′′ denotes some coupling coefficients that we will focus on later.

However, the above weak turbulence theory is not directly applicable to the Alfvénic
disturbance in tokamaks for the following reasons. First, the discrete spectra of AEs are
sparse especially for low-m, n (poloidal and toroidal) mode numbers, and the considerable
range of frequencies is occupied by the Alfvén continuous spectra which are approximated
by

ωA(r) =

[
m

q(r)
+ n

]
B̄T (r)

R0

√
ρ(r)

, (11)
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where r is the radial position in the flux coordinates, R0 the major radius of the magnetic
axis, B̄T (r) the flux averaged toroidal magnetic field, and q(r) the safety factor. The
discrete AE spectra tend to exist near the minima, maxima and gaps of these Alfvén
continua. Therefore, the exact resonance condition is rarely satisfied among AEs, but
there are many combinations of AEs that satisfy

ma = mb + mc, na = nb + nc, ωa = ωb + ωc + ∆ω, (12)

or ma = 2mb, na = 2nb, ωa = 2ωb + ∆ω. (13)

Note that the latter second-harmonic resonance is a special case of (12) with mb = mc,
nb = nc and ωb = ωc. The frequency mismatch ∆ω(� ωj, j = a, b, c) is closely related
to the deviation of eigenvalues from the edges of continua, which sensitively depends on
various effects (such as magnetic shear, toroidicity, finite ω/ωci, hot ions and pressure
gradient) [10, 11, 12, 13, 14, 15, 16].

Moreover, in experiments, only the several AEs often gain energy through the resonance
with energetic particles and antennas. In this work, we do not try to establish a holistic
theory that comprehend all interactions among eigenmodes and continuum modes, the
external energy source as well as the non-MHD effects. We will investigate only the
interactions between a large-amplitude AE (which is already pumped by the external
drive) and other AEs satisfying (12). The efficiency of this process is expected to be the
bottle-neck of the subsequent cascade of mode-mode couplings.

Let us choose three eigenmodes αξ =
∑

j=a,b,c[Cj ξ̂je
−iωjt +c.c.] labeled by a, b, c, which

satisfy the near resonance condition (12). Here, ωj > 0 is assumed without loss of gen-
erality. The amplitude equations for these eigenmodes can be derived from (8) or the
Lagrangian (5) as follows.

dCa

dt
= −i

W
(3)
a,b,c

µa

CbCce
i∆ωt,

dC∗
b

dt
= i

W
(3)
a,b,c

µb

C∗
aCce

i∆ωt,
dC∗

c

dt
= i

W
(3)
a,b,c

µc

C∗
aCbe

i∆ωt,

(14)

where ∗ denotes complex conjugate and we have defined

µj =

∫
V

[
ξ̂∗

j · ρ(ωj + iv · ∇)ξ̂j

]
d3x ∈ R (j = a, b, c) (15)

W
(3)
a,b,c =

∫
V

w(3)(ξ̂∗
a, ξ̂b, ξ̂c)d

3x. (16)

The system (14) is known to be solvable in the classical nonlinear theory [4, 5]. The
Manley-Rowe symmetry is obviously satisfied by the fact that a common coupling coeffi-

cient W
(3)
a,b,c (= 3rd-order potential energy) appears in the three equations.

In the absence of the equilibrium flow v = 0, the wave actions Nj = µj|Cj|2 (j = a, b, c)
are always positive and only the periodic energy exchange among the three modes occurs.
As illustrative examples, we exhibit the following two cases of energy transfer.

Case (i). Na(0) � Nb(0), Nc(0) ∼ 0 (higher freq. ⇒ lower freqs.)

If Na(0) > ∆N := µaµbµc∆ω2/4|W (3)
a,b,c|2 or |Ca(0)| > ∆Ca :=

√
∆N/µa the para-

metric decay occurs and the subsequent solution oscillates like

Na(t) Na(0) ↘ ∆N ↗ Na(0)
Nb,c(t) 0 ↗ Na(0) − ∆N ↘ 0
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Case (ii). Nb(0) = Nc(0) � Na(0) ∼ 0 (lower freqs. ⇒ higher freq.)

Lower-frequency eigenmodes ωb and ωc cooperatively drive higher harmonics ωa.

Na(t) 0 ↗ Nb,c(0) − ∆N ′ ↘ 0
Nb,c(t) Nb,c(0) ↘ ∆N ′ ↗ Nb,c(0)

where ∆N ′ =
√

∆N (Nb(0) + ∆N/4)−∆N/2. While there is no clear threshold in

this case, the initial amplitudes Cb,c(0) that are comparable to ∆Cb,c :=
√

∆N/µb,c

will decrease about 20%, and about 40% of the energy will be transferred to the
higher harmonics. The limit of large ∆ω, i.e., |Cb,c(0)| � ∆Cb,c, corresponds to the
nonresonant forced oscillation, Nb,c(0) − ∆N ′ ' Nb(0)Nc(0)/4∆N .

Note that the second-harmonic resonance ωa = 2ωb + ∆ω can be discussed in the same
manner by identifying the mode b with c. Although the solutions are periodic in both
cases, such the recurrent character of the solution would be destroyed if this coupling
is further accompanied by other secondary and tertiary mode couplings like (10). The
larger coupling coefficient and the smaller frequency mismatch, the more effective energy
transfer occurs, and they predict how much and how quickly the large-amplitude AE
(driven by energetic particles) loses energy via mode coupling.

4 Low-β approximation of the coupling coefficient among GAEs

In this section, we analytically estimate the coupling coefficient W
(3)
a,b,c for the global Alfvén

eigenmodes (GAEs) [10] in cylindrical geometry (r, θ, z). We assume that cylindrical
equilibria satisfy the low-β ordering; by introducing a small parameter ε,

v = 0, Bz = B0 = const., Bθ(r) ∼ εB0, p(r) ∼ ε2B2
0/2, ρ(r) ∼ ρ0. (17)

Let a and 2πR0 be the radius and length of the cylinder and impose the periodic boundary
condition in the z direction. The eigenmodes are written in the form of

Cξ̂e−iωt = C(ξ̂r(r), ξ̂θ(r), ξ̂z(r)) exp(imθ + ikz − iωt) (k = n/R0), (18)

where we normalize the eigenfunctions by ‖ξ̂‖2 :=
∫

V
ρ|ξ̂|2d3x = 4π2R0ρ0a

4 such that

ξ̂ ∼ a and the amplitude becomes small C ∼ α � 1.
When the Alfvén continuous spectrum ωA(r) [given by (11) with B̄T (r) ≡ B0] takes

a minimum at r = r0, we consider an AE eigenvalue ω just below the minimum, |ω −
ωA(r0)| ∼ ε|ωA(r0)|. The eigenvalue problem is then solved approximately by the local

analysis [11]. In terms of φ = rξ̂r, it is reduced to

d

dy

[
(1 − y2)

dφ

dy

]
− m2

r2
0

L2
ω(1 − y2)φ + gφ = 0 (19)

in the local coordinate y = (r − r0)/Lω, where

L2
ω = L2ω2

A(r0) − ω2

ω2
A(r0)

, g = − L2

r0

ρ′

ρ

∣∣∣∣
r=r0

, L2 = 2
ω2

A

(ω2
A)′′

∣∣∣∣
r=r0

.

The variational method [11] shows that, for g > 3/4, there exists an eigenvalue ω2 '
ω2

A(r0) (1 − r2
0ε0/m

2L2) whose eigenfunction is approximated by the Gaussian,

rξ̂r ' e−
(r−r0)2

∆r2 with ∆r2 = 2
r2
0

m2

√
ε0, ε0 = g − 1

4
−

√
g − 1

2
. (20)
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Once rξ̂r is solved in this way, the other components of the eigenfunction are related to
rξ̂r ∼ a2 in the following manners.

δξ̂P ' 2

√
ρωABθ

mr
rξ̂r ∼ ε

B2
0

2
, ∇ · ξ̂ ' −2

kBθ

mrBz

rξ̂r ∼ ε (21)

ξ̂θ ' i
1

m
(rξ̂r)

′ ∼ a, ξ̂z ' −i
Bθ

mBz

(rξ̂r)
′ ∼ εa (22)

This low-β ordering significantly simplifies the coupling coefficient. When a triplet of
AEs are substituted into (7), we find that the first three terms [e.g., −(∇ · ξ)Bζ · Bη] are
dominant (∼ ε), which originate from the nonlinearity of the J × B force, that is, the

Maxwell stress. Using Bξ̂ ' iω
√

ρξ̂, we obtain an insightful expression,

W
(3)
a,b,c =

∫
V

[
(∇ · ξ̂∗

a)ωbωcρξ̂b · ξ̂c − (∇ · ξ̂b)ωaωcρξ̂∗
a · ξ̂c − (∇ · ξ̂c)ωaωbρξ̂∗

a · ξ̂b

]
d3x

+ O(ε2) (23)

which implies that W
(3)
a,b,c is roughly the inner products between the eigenfunctions weighted

by ∇ · ξ̂j(∼ ε) and ωjωj′ . The spatial overlapping of three eigenfunctions is obviously es-
sential for the strong coupling.

If we assume three eigenmodes have the same helicity ma/na = mb/nb = mc/nc, the
associated Alfvén continua take a minimum at the common position r = r0. Then, all
eigenfunctions (φ = rξ̂r) are peaked at r = r0 and their coupling is expected to be strong.

Using the approximation of ∇· ξ̂ in (21) and extracting the values at r = r0, the strength
of coupling can be estimated by√

ω
(3)
a,b,c :=

√
4π2R0ρ0a4

|W (3)
a,b,c|√

|µaµbµc|
=

√
|ωa|ρ0

|ma|ρ(r0)

a2

R2
0

∣∣∣∣ na

q(r0)ma

∣∣∣∣ F (∆r/r0,ma,mb),

(24)

where a non-dimensional function F depends on the modal structures. If the Gaussian
approximation (20) is further employed, it is greatly simplified into

F (∆r/r0,ma,mb) =

(
2

π

)1/4
√

2(m2
a + m2

b + m2
c)

r̂
r0

+ r0

r̂

,
r̂

r0

=
√

2ε
1/4
0 . (25)

5 Numerical evaluation

To make best use of the general expression derived in (7) and also validate the analytic
formula (24), we have numerically solved the full eigenvalue problem in the cylindrical
geometry (called the Hain-Lüst equation, see [10]) and calculated the coupling coefficient
in a direct manner. We choose the same equilibrium profiles as Ref. [10],

Jz(r) =(rBθ)
′/r = J0(1 − r2/a2)ν , ρ(r) = (ρ0 − ρa)(1 − r2/a2)κ + ρa. (26)

Owing to the positive shear, from q0 = 2B0/(R0J0) to qa = q0(ν + 1), and the density
gradient, from ρ0 to ρa, there exist minima of Alfvén continua.

For ωA0 = B0/a
√

ρ0 = 1.0, q0 = 1.0, qa = 5.0, ρa/ρ0 = 0.05, κ = 1.0 and R0/a = 3.0, the
numerically calculated GAE spectra are shown in Fig. 1 for (m,n) = (1, 2), (2, 4), (3, 6).
They satisfy the near resonance condition (12) with ∆ω = 0.0350. Since the maximum
plasma beta is found to be β0 = 0.033 at r = 0, the low-β approximation is not sufficiently
but modestly satisfied; ε ∼ 0.1. The coupling coefficient among the GAEs is calculated
as
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Figure 1: (a) Discrete GAE spectra ωa, ωb, ωc below Alfvén continuous spectra ωA(r) and
(b) corresponding eigenfunctions with respect to rξ̂r.
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Figure 2: Dependence on the safety factor q at r = r0

Numerical result Analytic formula√
ω

(3)
a,b,c 0.689 0.576

where the numerical result is obtained from the direct integration of (7) using the genuine
eigenfunctions whereas the analytic result is derived by (24) with the Gaussian model
(25). Even though the parameter ε is not so small, our analytic formula shows a good
agreement with the numerical result. The remaining discrepancy is mainly stemming
from the use of the Gaussian model. In Fig. 1(b), the (1, 2)-mode does not fit into the
Gaussian in comparison with other two modes and its modal width ∆r is regulated by
the boundaries rather than the local analysis. When the parameter ν (namely, qa) is
increased, both the numerical and analytic results show the same tendency to decline in
proportion to 1/q(r0) ∼ ε (Fig. 2), as predicted by the analytic formula (24).

The values of ω
(3)
a,b,c and ∆ω can predict the effect of the nonlinear coupling according to

Cases (i) and (ii) in Sec. 3. The energy exchange becomes active when the amplitude |Cj|
exceeds the level of ∆Cj :=

√
∆N/µj =

√
∆ω2/4ωjω

(3)
a,b,c, which is numerically calculated

as ∆Ca = 0.0132, ∆Cb = 0.0182 and ∆Cc = 0.0260.

6 Summary

Based on the MHD Lagrangian theory, we have formulated a weakly-nonlinear equa-
tion of motion (8) for the displacement field ξ. The new quadratic force term F (2) is
responsible for nonlinear mode-mode couplings, which lead to various phenomena such
as parametric decay, second harmonic generation, explosive instability (if negative-energy
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mode exists) and weak turbulence (if many modes are coupled with each other). The asso-
ciated potential energy W (3)(ξ, ξ, ξ) with cubic symmetry serves to quantify the efficiency
of individual three-mode (and also second-harmonic) coupling. This formalism, for the
first time, enables us to analyze nonlinear coupling of “global” MHD eigenmodes, which
has been unexplored in the conventional wave-kinetic theory that rests on the eikonal
approximation.

For the purpose of predicting nonlinear dynamics of AEs in tokamaks, we have examined
nonlinear coupling of AEs in cylindrical geometry both analytically and numerically. The
low-β approximation is used to obtain an analytic formula of the coupling coefficient (24),
which shows a good agreement with the direct numerical calculation of W (3). Besides the
spatial overlapping of three eigenfunctions, the finite compressibility ∇ · ξ̂(∼

√
β) of the

eigenfunction is essential for the coupling of AEs to be effective. The coupling coefficient
is found to be proportional to

√
β (or 1/q) and square of the inverse aspect ratio a2/R2

0.
Since the exact resonance condition is rarely satisfied among AEs, the frequency mis-

match ∆ω must be also taken into account. The mode coupling is inhibited by ∆ω in such
a way that the nonlinear effect works only for large-amplitude AEs satisfying Cj & ∆Cj.
The value ∆Cj can be interpreted as a nonlinear saturation level of the energetic-particle-
driven AE because the energy transfer among AEs becomes enhanced beyond this level.
For the three GAEs studied in Sec. 5, the saturation level is about ∆Cj ∼ 0.01, where Cj

is related to the magnetic field fluctuation via δB/B0 ' Cj(ωj/ωA0)
√

(ρ/ρ0)ξ̂j/a.
In tokamaks, AEs emerge due to various effects (including the toroidicity) and the eigen-

value equation [especially g in (19)] should be modified to reflect them [11, 12, 13, 14, 15,
16]. We expect that ∆ω is sensitive to these modifications whereas the low-β approxi-
mation of the coupling coefficient given here is still valid. Since the general expression of
the coupling coefficient is obtained in this work, it can be evaluated numerically by sub-
stituting eigenfunctions of the existing eigenvalue solver for tokamak. This quantitative
evaluation would be more relevant to the experimental observation of the saturation level.
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