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Abstract. Error fields and resistive magnetohydrodynamic (MHD) modes are ubiquitous in real tokamaks.
They break the toroidal symmetry in IBl in tokamaks. Here, B is the magnetic field. The broken toroidal
symmetry leads to enhanced neoclassical toroidal plasma viscosity and consequently the rate of the toroidal
flow damping. The neoclassical toroidal plasma viscosity also results in a steady state toroidal plasma flow
even without toroidal momentum sources. The same physics mechanisms and phenomena are also applicable
and can be observed in the vicinity of the magnetic islands. All these physics consequences are of interests to
tokamak devices such as International Thermonuclear Experimental Reactor (ITER). ITER is expected to
have low toroidal rotation. Thus, understanding viscosity becomes crucial in predicting rotation in ITER.

1 Introduction

Real tokamaks have error fields and magnetohydrodynamic (MHD) modes that break
toroidal symmetry[1-3]. There are two mechanisms that break the symmetry on the
perturbed magnetic surface: one is the perturbed field itself [1,2] and the other results from
the distortion of the magnetic surface due to the perturbed field [3,4]. The broken symmetry
enhances the toroidal plasma viscosity and the rate of the toroidal flow damping. It also
results in a steady state toroidal plasma flow [3,4].

A comprehensive theory has been developed to extend the existing theory of the
neoclassical toroidal plasma viscosity [3,4] to the low collisionality regimes relevant to
tokamak experiments [5]. The theory extends the stellarator transport theory [6,7] to
include multiple perturbed modes. Specifically, we have extended the theory by solving the
bounce averaged drift kinetic equation in the low collisionality regimes to obtain various

asymptotic limits: besides the 1/v regime, the collisional boundary layer N regime, the
superbanana plateau regime, the collisionless detrapping/retrapping regime, and the
superbanana regime. Here, v is the collision frequency. The transport fluxes in these
regimes can be categorized as mainly due to resonant and non-resonant particles. The
resonant transport fluxes in the superbababa plateau regime and the superbanana regime
involve the resonance between the ExB drift and the VB drift. Here, FE is the electric field
and B is the magnetic field. The resonance results in enhanced particle and energy losses
for high energy particles. The non-resonant transport fluxes in the collisional boundary
layer N regime and the collisionless detrapping/retrapping regime involve mainly the low
energy particles in the vicinity of the trapped and circulating boundary. When collision
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frequency is high enough to destroy boundary layer physics, the non-resonant transport
fluxes enter the 1/v regime. All these fluxes are nonlinear function of the radial electric
field except the ones in the 1/v regime. For the resonant transport fluxes, they decrease
exponentially as the appropriately defined ExB Mach number exceeding unity, similar to
the nonlinear plasma viscosity [8] that is responsible for the L-H transitions observed in
tokamaks and stellarators. For the non-resonant transport fluxes, they decrease
algebraically when the respective Mach numbers are larger than one. Qualitative results of
the theory can be understood from the random walk argument. An approximate analytic
expression that joins all these asymptotic limits has been constructed for modeling purposes
[5] and is in good agreement with the numerical results [9]. This expression can also be
used to determine the steady state toroidal plasma flow. The theory has been tested in
NSTX [10],JET [11], MAST [12] and DIII-D [13].

It is known that the neoclassical toroidal plasma viscosity results in a steady state toroidal
rotation even without momentum sources. The same phenomenon has also been observed
in stellarator experiments [14]. It can be used to control toroidal plasma rotation in fusion
grade tokamak experiments such as ITER. However, enhanced energy loss that comes with
the enhanced momentum loss should impose a constraint on such control schemes by
limiting the magnitudes of the error fields and the mode numbers. The heat fluxes in the
theory together with the tolerable energy loss can be used to calculate maximum values of
the error fields that can be used in such schemes.

The theory is extended to include the finite gradient B drift effects on the boundary layer
analysis, the boundary effects on the superbanana plateau resonance, and to the region in
the vicinity of a magnetic island.

2 Theory for Neoclassical Toroidal Plasma Viscosity

We refine the theory for the neoclassical toroidal plasma viscosity to include the finite
gradient B drift effects in the boundary layer analysis, and the boundary effects on
superbanana plateau resonance.

2.1 Magnetic Coordinates and Magnetic Field Spectrum

We adopt Hamada coordinates here [15]. The contravariant representation for the magnetic
field B in these coordinates is B = ¢'VVxV@ - x'VVxVE, where 0 is the poloidal angle,
is the toroidal angle, x'= B*V6, y'= B*V{, and V is the volume enclosed inside the
magnetic surface. The inverse Jacobian is VVxV6 ¢V = 1. For doubly periodic toroidal
plasmas, the magnetic field spectrum can be expressed as

B= B, (1-£cos0) - B, Y. [b,, cos(mb-nL)+b,,sin(md-n)l, (1)

where B, is the strength of the magnetic field on the magnetic axis, m is the poloidal mode
number, 7 is the toroidal mode number, ¢ is the amplitude of the cosé mode, b, and b,
are the Fourier amplitudes for the (m,1) mode. We are interested in cases where the
magnitudes of perturbed field amplitudes b,,. and b, are small so that there are no new
classes of trapped particles besides those trapped in the equilibrium magnetic field variation
(scos 0). For shaped equilibria, ¢ is not necessarily equal to r/R, where r is the minor

radius and R is the major radius. The spectrum in Eq.(1) can be expressed as B/B,
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=(1-£cos0) - En[A" (6)cosng, + B,(0) sinnCO] , where is §, = g0 -G, q is the safety factor,
A, (0)= Em{bm cos[(m - nq)01+ b, sin[(m - ng)61}, and B,(0)
= Em {-b,,,.sin[(m - ng)B] + b, cos[(m - nq)8]}.

2.2 Linear Bounce Averaged Drift Kinetic Equation

We are interested in the collisionality regime where the effective collision frequency v/e
for trapped particles, i.e., bananas, is less than their bounce frequency vtw/g /(Rq). Here, v,

= «2T/M is the thermal speed of particles, T is the temperature, and M is the mass of the
species. In this collisionality regime, the dominant physics for the transport fluxes caused
by the broken toroidal symmetry in B are bananas wobbling off the magnetic surface to
form drift orbits, which have a typical width, e.g., superbananas, of the order of the local
minor radius. Thus, they cause significant transport losses over the conventional transport
losses in ideal axisymmetruc tokamaks [16,17]. To develop theory for the bananas
wobbling off the magnetic surface, it is nature to bounce average the drift kinetic equation.
The linear version of the bounce averaged drift kinetic equation is [3,4,6,7]

. I o Y —
<Vd VCO>b d_§0+ <Vd VV>bW - <C(f10)>b’ )
where flO(V,ZjO,E ,k) is the perturbed distribution function, f,, is the Maxwellian
distribution function, E = Mv’/2 is the energy, v is the speed, k’=

[E — uB,(1 —8)]/(2‘11308) is the pitch angle parameter, = Mv}/(2B), v, is the speed of
the particles perpendicular to B, for low  plasmas the drift velocity v, [16] isv,= -
v,nxV(v,/Q), n = BIB, Q = eB/(Mc), c is the speed of light,v, is the speed of the
particles parallel to B, £ is the ratio of the thermal energy to the magnetic field energy,
C( fw) is the Coulomb collision operator, the bounce averaging operation in Eq.(2) is

defined as <A>b: (gﬁdHAB/I \4 I)/(ngHB/I v D), gﬁ =f_96; , and =0, are the turning

points of the trapped particles where | v,| = 0. Note that the bounce averaging operation is
performed in between turning points of the trapped particles because only the terms that are
even functions of v, survive the original bouncing averaging operation <A> »=

EO (gﬁ dOAB/I \4 I)/(gﬁ dHB/I \4 I) , where o =v,/I'v,| denotes the sign of v,. The pitch angle

parameter k> separates circulating particles with k*> > 1 from trapped particles, i.e.
bananas, with k> < 1. Note that the notation E without an argument k denotes particle
energy and with an argument k represents the complete elliptic integral of the second kind.
The explicit expressions for bounce averaged toroidal drift speed <V 2" VCO> ,» radial drift

speed <V . VV> , » and collision operator <C ( f10)>b are

(v V)= - L 220
X ex
(vae VV>,,=% i(k) > $do[A,(O)-nsinnL,)+ B,(6)(ncosnE,)] /i - sin*(6)2) ,

and
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J o
(Ca= o akz{[Eu«) (1=KHKB] 2% }

The prime denotes d/dV in section 2. The deflection collision frequency v,, is defined in
[18]. The curvature drift is neglected by invoking large aspect ratio expansion. Thus, we
treat uB,~ E. We use the pitch angle scattering operator because it has an enhancement
factor of 1/e.

2.3 Finite Gradient B Drift Effects on Boundary Layer Analysis

The gradient B drift speed in the toroidal direction is often neglected in the transport theory
for non-axisymmetric large aspect ratio tori except in the superbanana plateau and
superbanana regimes because the typical magnitude of the ExB drift is larger than that of
the gradient B drift for thermal particles. However, to improve the accuracy of the theory,
we include the finite gradient B drift effects in the boundary layer analysis.

Following the procedure developed in Ref.[19], the solution for Eq.(2) is
cuB, a, 1 8
v, VG,), vV 4K(k)

Jo=- eX’<

{ Egﬁ 5 [An(H)(l '"Vcosw/my) + Gan(H)e‘“M’ smﬁy]oosné‘o +
kK’ —51n2()
2

EEﬁL[Bn (0)(1 _ ey cosw/my) - gwAn(Q)e“/my sinMy]Sin n&, } ,(3)

" k* - sinz(e)
2

where g, = = 1 indicates the direction of the toroidal drift frequency <V 2" VCO> ,» ¥ s the

stretch  variable  defined as y = (1 —kz) (vp/v,) 1/2( ) 1, Vig=

1/2
[(4vt /8)/‘<Vd . VC0>,,L_M2], and Ak® = [v*d/ln(16/1/v*d )] . The subscript 1- Ak* indicates
that the quantity is evaluated at the edge of the boundary layer, if the quantity diverges at
k*=1, and evaluated at k°=1 if it converges. The collision frequencyv is defined as v; =
N2 ntiNe; lnA/(M 1/2T3/2) for ions, and v, =2 TN, Z e, “In AN(M, 2 3’/2) for electrons,

where Z; is the charge number of ions. Using the distribution in Eq.(3) to calculate the flux
surface averaged particle flux yields

(eVV) =-N(Vi [7*?) [M/ @] (v,/\32¢)[m(p'/ p+e®/T) +m,T'/T], (4)

wheren =(1/2) fdxxS/z(x —5/2)j_1e‘x(vD/vl) f;alk2 [E(k) —(1 - kz)K(k)] En (&f + B,,z)
for j = 13
(-1/2) F,

o> i fao Vi=sin*(6/2) K(k)

(A (6)1-e" cosin ly)+o,B, ()" sinin ly]

9 fao -1/2)  F,
a7 Jk=sin¥(02) K(k)

[B,(0)(1-e"" cosInly) -0, A (O)e ™™ sinvI n ly]
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-1
s

F,={1- 04 (x/x,;,)2E(K) K (k) - 1]} xmm:‘Z(I)’e/ (Mv}€), and o, =1 if both e and @

have the same sign otherwise o, =-1,. The flux surface averaged normalized heat flux

<é *VV/ T> is the same as (I'+ VV) except 1, is replaced by n, and n, by n,.

2.4 Boundary Effects on Superbanana Plateau Resonance

It is customary to neglect the boundary effects on the superbanana plateau resonance
[6,7,20]. However, when the resonance pitch angle is close to either k*=1 or k*’= 0, the
boundary conditions at these points become important [9] and the physics of the

superbanana plateau resonance is modified.

The flux surface averaged particle flux resulting from the modified superbanana plateau
resonance becomes
p ed T
"l( p T ) o

where C,=0.1667 = 1/6 when the resonant pitch angle k;, defined as the resonance pitch

2
(TeVV) =- %CPN Y26 2 M (o + B2)K(K,)

T g lely

, (5)

angle at which the ExB drift speed cancels the gradient B drift speed, is close 1, C,=0.25
when resonance occurs at k;= 0, 1, = F(5/2), n,= F(7/2)— (5/2) F(5/2) and I is the

61
gamma function. The parameter a,= [1/4K(k)] f d@An(H)/ k* —sin*(6/2), and B,=

_9’

61
[1/4K(K)]fd93n (8)/ k* —sin*(6/2). When k; is close to unity, we evaluate K(k,) at the

_91

edge of the resonance layer, thus, K(k,) = (1/2)ln(16/\7”3), where v
:{(2vt/£)/[cMV,2Is’llnl/(ZIelx’)]}. When k; is close to zero, K(k,) =~ /2. The

normalized heat flux <q *VV/ T> has the same form as <F . VV> except 7, is replaced by 1,
and n, by n, = 1(9/2)-51(7/2) +(25/4)1(5/2).

2.5 Flux-Force Relation

The transport fluxes calculated here are related to either the toroidal or the poloidal
component of the viscous forces in Hamada coordinates [21]:

c c
(LeVV)=- ——(B,*Ven) = ——(B,*V*m), (6)
exy " exy
where B, = - x'VVxVE, B,=49'VVxV#, and m is the Chew-Goldberger-Low viscous tensor.
Note that the charge e in Eq.(6) is species dependent. The subscript that denotes plasma

species is suppressed in Eq.(6). Thus, they can be used in the toroidal momentum evolution
equation to model toroidal flow or the radial electric field.

3 Neoclassical Toroidal Plasma Viscosity in the Vicinity of a Magnetic Island

The theory for the neoclassical toroidal plasma viscosity in the vicinity of the magnetic
island has been developed in Ref.[4] and the results have been used to calculate the island
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rotation frequency [22]. The theory is extended to include the boundary layer effects here.
We adopt the representation of B = IVE + VEx V(lp + (51/)) in section 3, where I = RB,, B,
is the toroidal magnetic field, v is the equilibrium poloidal flux function, 8y = ¥ cosma
is the perturbed poloidal flux resulting from the presence of the magnetic island with an
amplitude ¥, a= 6 - {/q, is the helical angle, g.=m/n is g at the resonant radius r = r,.
The |IBI on the island magnetic surface is [4]

B —

—=1- i:i\/11’+cosmoc cosf, @)

B, R R
in the vicinity of a magnetic island, where W= -W/{y, W is the helical flux function,
r,=+/2¢2) /(¢'B,r,) is proportional the width of the island, and ¢'=dq/dr | . In the vicinity
of the magnetic island, the parameter k’= 2/ (1 + @) delineates the regions outside,
where k? <1, and inside, where k> = 1, the separatrix at which k*=1.

The linear bounce averaged drift kinetic equation for the island magnetic
geometry (‘I’,a,@,E ,,u) , using constant-1p approximation, is, for trapped particles,

° % ° ﬂ —_
<Vd V(x>b P + <Vd V‘P>b P <C(f01)>b, (8)

When v/e>> <V 2" V(x>b , the solution of Eq.(8) yields the well-known 1/v scaling of the
transport fluxes [4,6,7]. Here, we are interested in the limit where v/e<< <V 4 -V(x>b~
v, *Va with v,, the ExB drift velocity by neglecting the VB, and the curvature drift
velocity. When the VB drift velocity, and the curvature drift velocity are comparable to the
ExB drift velocity, the solution of Eq.(8) yields superbanana plateau regime and
superbanana regime [6,7,21,23]. We will address the physics of these two regimes
separately. The appropriate expressions for the components of the drift velocity are

<Vd . Va>bz Icd’ o

BV —, 9
B P )
and, in a large aspect ratio tokamak,

IB+VO ¥ v’ oA

(v VW) =

2E(k) .
b BQ Y 2 da | K(k) ’
1/

where A= = (rw / R) (@ +C08 ma) *In section 3, prime denotes d/d¥ .

(10)

The solution of the perturbed distribution outside the island is,

2
BV 12EW T L [y 2T,
c@Q 2 | K(k) oW R K(k)

Jow=7F

1(1—2”[(1—6"‘/;}’ cosx/;y)cosnn—e"‘/;y sin\/;ysinnn], (11)
n=1 + q

where q = e™"'¥, K’(%):K(wll—l?), n= W/K(E), U= f:dx/wll—Ezsinzx, p=mal2,

the stretch variable y is defined as
1/2

y= (1-17) (fc 1071/B)( » Vo) qr, 1q,)mW +1[(x/2) /K (k)]

(v, /2¢) /1n(4/ JAK? )

(12)
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The layer width Ak” defined in Eq.(12) is obtained by setting y = 1 in Eq.(12). Using the
distribution in Eq.(11), we calculate the island magnetic surface averaged particle flux:

1/2
M (Y| B (1)2 qr 16
r-vwy —| nevo="m|v,, In——
v () el oo e

Q s
(£+£)+Azl
T

X

, 7| (13)

@\
kK(k)l E‘/_ 1+q2") &
where A= (1/2) f:dxxj/z(x—5/2)j_le"x(vD/vz) for j = 1-3 and v!, = [vr/(2s)]x
[(IC|CI>'|/B)(n-VH)(q;rw/q_Y)m\/¢’+l(ﬂ/Z)K_'(E)]_l. The normalized heat flux

(q* V¥/T)has the same form as (I's VW) except A, is replaced by A, and 4, by A,.

The perturbed distribution function inside the magnetic island is
___B 2E(k) \/— 27
Joo=F 90 2 |k ] MW R ( )

m 1/2

E e [(1 — 7 cos2m ~Tz)cos@m - ) - & sin2m ~ Lzsin(2m - 1)5] (14

where § = W/ZK(/%) LU= f(;p dx/\/lz2 —sin’x, k=1/k , the stretch variable z is defined as

_ (1 _ kz) (IC Kod I/B)(n . V@)(qyl’w /q )(m/ﬁ)[(”/2)/l<(12)] 1/2
z= (v, /e)in(4/ V%)

The q in Eq.(14) is defined in terms of K( 12) and K'= K(V1- k> ). The layer width Ak* can
be estimated by setting z = 1 in Eq.(15). The island surface averaged particle flux is

) ) 1/2
r |B |([) qr, ; 16
e VW)=-+2¢ w | nevede ! Inf —
L V)= 2«/}3’2(1%) BN M WV e

|Icq),| Q s
(p’ +£()’)+)»2z

K(k)]EU 21+q p T T

~ -1
where v/, = [v,/(2¢)] [(1c|c1>’|/B)(n-V9)(q;rW /qs)m(ﬂ/Zw/E)K"(k)] . Replacing A, by
A, and A, by A; in Eq(16) yield the normalized heat flux <q- v/ T>. The gradients of
plasma pressure and temperature inside the island are not necessary zero due either to
plasma fueling or to finite transport processes along the field line. Because the gradient

scale length of the radial electric field is of the order of the island width, the turbulence
fluctuations are suppressed and the plasma confinement is improved [8,24].

(15)

: (16)

4 Bounce-Transit and Drift Resonance

In the low collisionality regime, there can be resonances between the bounce frequency of
the trapped particles and the toroidal drift frequency [25] and between the transit frequency
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of the circulating particles and the toroidal drift frequency [26]. Because the mechanisms
of the resonances involve bounce and transit motions they can only be described by the
non-bounce averaged drift kinetic equation [26]. An Eulerian approach to solve the drift
kinetic equation including the physics of these resonances has been developed to calculate
the enhanced plasma viscosity [26]. Transport consequences, including the modification on
the bootstrap current and plasma flows, have also been calculated [27].

5 Discussions and Concluding Remarks

We have developed a comprehensive theory for the neoclassical toroidal plasma viscosity
for real tokamaks that have error fields or MHD activities present. The refinement of the
theory to include the finite gradient B effects on the boundary layer analysis and the
boundary effects on the superbanana plateau resonance is presented. The theory is also
extended to the region in the vicinity of the magnetic island. The theory can be used in
modeling the toroidal plasma rotation or the radial electric field in ITER.

This work was supported by US Department of Energy under Grant No. DE-FG02-01ER54619
with the University of Wisconsin.
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