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Abstract. A multi-scale MHD numerical scheme is developed for the analysis of nonlinear evolution of beta-
increasing plasma. The scheme is based on the iterative calculations of nonlinear dynamics based on the reduced
MHD (RMHD) equations and three-dimensional static equilibrium. The equation for average pressure in the
RMHD equation plays a roll of a transport equation that involves a heat source term and background pressure
diffusion term. The heat source term is controlled so that the beta value should be increased in a constant rate.
The scheme is applied to a configuration of the Large Helical Device (LHD), where ideal interchange modes are
predicted to be unstable while beta values much higher than the predicted limit are obtained in the experiments.
Local flat structure is generated in the background pressure profile due to the nonlinear saturation of the interchange
modes. The generation reduces the driving force of the modes at higher beta value. Such self-organization in the
pressure profile is considered to be the stabilizing mechanism in the plasma.

1. Introduction

In experiments in the LHD, high beta plasmas have been successfully obtained. Particularly,
average beta of �β � � 5% was achieved in the inward-shifted configuration with the vacuum
magnetic axis located at Rax � 3�6m[1]. On the other hand, in this configuration, equilibria
calculated under the assumption of a parabolic pressure profile that is close to the profile ob-
served in the experiments are predicted to be unstable against linear ideal interchange modes at
much lower beta values than 5%[2]. The result indicates existence of a stabilizing mechanism
that cannot be explained by the linear ideal stability theory. We investigate the mechanism in
the point of nonlinear evolution of the plasma by utilizing a nonlinear dynamics code called
NORM[3], which is based on the RMHD equations.

Since the interchange mode is a pressure driven mode, the stability property strongly depends
on the beta value through the change of the equilibrium. Therefore, for the consistent study
of the mechanism, it is necessary to incorporate beta increase effect for equilibrium quantities
as well as perturbations in the analysis. However, there is a big difference in the time scales
between the equilibrium evolution and the perturbation dynamics, which is in the order of 105 -
106. To analyze this multi-scale problem, we develop an iterative scheme with the NORM code
and the VMEC equilibrium code[4]. In the original scheme[5,6], the equilibrium is updated
every short time interval of the dynamics calculation of the perturbations. The beta value is in-
creased stepwise by adding a small increment to the background pressure when the equilibrium
is updated. By applying this scheme to the low beta LHD plasma we observed self-organization
of the pressure profile[5,6].

The scheme has been significantly extended so that continuous heating and diffusion of the
background pressure can be taken into account[7]. In this scheme, the equation for the average
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pressure is separately treated as a pressure transport equation. The beta value is increased by
means of the heat source term in the equation. In Ref.[7], we obtained a preliminary result for
the LHD plasma by using a fixed heat source. In this case, the beta value is saturated at a low
level in the time evolution due to the diffusion of the background pressure. Thus, in the present
work, we control the heat source term so that the beta value can be increased in a constant rate.
This control makes it possible to avoid the saturation of the beta and to examine the plasma
behavior up to any high beta value in principle. We apply the scheme to the LHD plasma to
investigate the stabilizing mechanism.

2. Multi-Scale Scheme Incorporating Pressure Transport Equation

Here we review the multi-scale scheme incorporating a pressure transport equation briefly and
explain how the heat source term is controlled in the present analysis. The nonlinear dynamics
calculation in the scheme is based on the RMHD equations for poloidal flux Ψ, stream function
Φ and pressure P[3]. Here, we separate the variables differently. The poloidal flux and the
stream function are separated into equilibrium and perturbed parts as

Ψ�ρ�θ �ζ ; t� � Ψeq�ρ�� Ψ̃�ρ�θ �ζ ; t� and Φ�ρ�θ �ζ ; t� � Φ̃�ρ�θ �ζ ; t�� (1)

respectively, while the pressure is separated into average and oscillating parts,

P�ρ�θ �ζ ; t� � �P��ρ; t�� �P�ρ�θ �ζ ; t�� (2)

Here we employ the flux coordinates �ρ�θ �ζ �, where ρ denotes the square root of the normal-
ized toroidal magnetic flux, and θ and ζ are the poloidal and the toroidal angles, respectively.
The subscript ‘eq’ and the tilde indicate the equilibrium and the perturbed quantities, respec-
tively. The angle bracket and the hat indicate the average and the oscillating parts, respectively.
By substituting these separated variables into the RMHD equations, we obtain the equations for
Ψ̃, Φ̃, �P and �P�, which are given by
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Here �y�z� denotes the Poisson bracket which is defined as �y�z� � �g�ρ���∂y�∂ρ��∂ z�∂θ��
�∂y�∂θ��∂ z�∂ρ��� The diffusion operators Δ� and ∇†2
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� respectively, where R�R0 denotes the normalized

major radius. The perpendicular and the parallel differential operators are given by ∇� f �∇ f �
∇ζ �∂ f�∂ζ � and ∇� f � g�∂ f�∂ζ �� �Ψ� f �� respectively, where g is a factor corresponding to
diamagnetic effect. The current density and the vorticity in the toroidal direction are given by
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Jζ � Δ�Ψ and U � �R�R0�
2∇2

�Φ, respectively. Factors of ε , S, ν , κ� and κ� are inverse aspect
ratio, magnetic Reynolds number, viscosity coefficient and heat conductivities perpendicular
and parallel to the magnetic field, respectively, and Ωeq denotes the average field line curvature.
In the present analysis, the values of S � 1�0� 106, ν � 1�7� 10�4 κ� � 1�7� 10�6 and
κ� � 1�7�10�2 are assumed. A heat source term Q is added in eq.(6), which is utilized for the
increase of beta.

In this formulation, we treat �P� as the background equilibrium pressure. The pressure can be
changed by both the finite beta value and the perturbation dynamics. Equation (6) expresses
the dynamics of the background pressure. The equation consists of the convection, the per-
pendicular and the parallel diffusion of the average pressure and the heat source term. These
terms correspond to the anomalous diffusion due to the nonlinear turbulence, the classical heat
diffusion and the continuous heating, respectively. Thus, the equation plays a role of a transport
equation in the scheme.

The scheme consists of a series of time evolution steps for a certain time interval. The time
evolution in each interval is calculated with a predictor-corrector method. Here we consider
to increase the average beta value from �β �i to �β �i�1 in the interval of ti � t � ti�1. In the
predictor step, the equilibrium pressure Ppre

eq is calculated at the beginning (t � ti) and the end
(t � ti�1 ) of the interval at first. For the equilibrium pressure at t � ti, the calculation result for
�P� in the interval of ti�1 � t � ti is employed, i.e., Ppre

eq�i � �P�i. The equilibrium pressure at
t � ti�1 is calculated by the addition of an increment pressure as,

Ppre
eq�i�1 � �P�i �ΔPpre

i�1�ρ�� (7)

Here ΔPpre
i�1 is an increment of the pressure, which is given by

ΔPpre
i�1�ρ� � ��β �i�1��β �i�FP�ρ�� (8)

where FP�ρ� is a given profile. The equilibria at t � ti and t � ti�1 are calculated by means of
the VMEC code for Ppre

eq�i and Ppre
eq�i�1, respectively. By interpolating the equilibrium quantities

at t � ti and ti�1, we obtain the quantities at every time step of the dynamics calculation with
the NORM code. The heat source term in eq.(6) is determined so as to be consistent with the
pressure increment as

Qpre
i�1 �

ΔPpre
i�1

ti�1� ti
(9)

Then, we follow the time evolution of the dynamics by means of the NORM code with the
interpolated equilibrium quantities and the heat source.

In the corrector step, the result of the dynamics calculation in the predictor step �P�pre
i�1 is utilized

in the calculation of the equilibrium pressure at t � ti�1. In this case, the reduction of the
pressure due to the diffusion have to be compensated. The equilibrium pressure is given by

Pcor
eq�i�1 �

�β �i�1

�β �pre
i�1

�P�pre
i�1� (10)
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FIG.1. Profiles of DI for the cases of the fixed equilibrium pressure profile at �β �� 0�716% of
P � P0�1�ρ2��1�ρ8� (red line) and the beta increasing scheme at �β �� 0�713% (blue line). Positive
and negative values indicate stable and unstable regions, respectively. Profile of the rotational
transform in the equilibrium for P � P0�1�ρ2��1�ρ8� is also plotted.

where �β �pre
i�1 is the average beta value obtained at t � ti�1 in the predictor calculation corre-

sponding to �P�pre
i�1. The pressure increment for the heat source term is evaluated as,

ΔPcor
i�1 �

	
��β �i�1�

2

�β �pre
i�1

��β �i



FP�ρ�� (11)

As in the case of the predictor step, the heat source term in eq.(6) is determined as

Qcor
i�1 �

ΔPcor
i�1

ti�1� ti
� Q0�i�1FP�ρ�� (12)

Then, the dynamics is calculated again with the NORM code for the corrector step. In the
present work for the LHD plasma, we employ a constant increasing rate of the beta value.
Hence, we use ΔPcor

i for ΔPpre
i�1 instead of eq.(8) to enhance the accuracy in the predictor step.

3. Magnetic Configuration and Nonlinear Dynamics for a Fixed Equilibrium Pressure

In the present work, we investigate the stabilizing mechanism of the LHD plasma in the config-
uration with the vacuum magnetic axis located at Rax � 3�6m. In the vacuum configuration, the
rotational transform increases monotonously in the range of 0�35 � ί � 1�8. Before studying
the beta-increasing case with the multi-scale scheme, we examine the nonlinear behavior of the
plasma for a fixed equilibrium pressure for the comparison. We employ a currentless equilibria
at �β �� 0�716% with a parabolic pressure profile of

Peq � P0�1�ρ2��1�ρ8�� (13)

This profile is close to the observed one in the experiments at low beta[8]. This equilibrium is
unstable against linear interchange modes. The core region of ρ � 0�689 is Mercier unstable
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FIG.2. Bird’s eye view of total pressure for the fixed equilibrium pressure at (a) t � 0τA, (b) t � 4490τA,
and (c) stream lines at t � 3630τA.

as shown in Fig.1. The absolute value of the Mercier quantity DI[9] has a very large value at
the rational surfaces of ί � 2�5, 1/2 and 2/3. The property of DI indicates that multiple global
modes with low mode numbers have significant growth rates.

We follow the time evolution of the nonlinear dynamics for the fixed equilibrium pressure.
Figure 2 (a) and (b) are the total pressure at t � 0τA and 4490τA, where τA denotes Alfvén time.
The pressure collapses in a short time as shown in Fig.2(b). In the time evolution, several global
modes with different mode numbers grow simultaneously at different rational surfaces. In the
early stage, each mode is localized around its resonant surface. As the modes grow, the radial
width of the vortices becomes wider. Then, the vortices of the modes overlap and merge each
other. As a result, large vortices are generated as shown in Fig.2 (c). The vortices convect the
pressure from the core to the edge and lead to the rapid collapse. This situation corresponds
to a minor disruption. However, this is not the case of the LHD plasma. The plasmas at much
higher beta value are obtained without such disruptive phenomena in the experiments.

4. Multi-Scale Analysis of Beta Increasing Plasma

Next, we apply the multi-scale numerical scheme to the LHD plasma. The average beta value
is increased from �β �� 0�220% to 1�054% in a constant rate. The increasing rate is controlled
so as to be 0�5�10�5%�τA as shown in Fig.3. We use the profile of FP � �1�ρ2��1�ρ8� for
the initial pressure profile as well as the profile of the heat source term given by eq.(12). Then,
the factor Q0 is increased as the average beta value is increased, as shown in Fig.3.

Figure 3 also shows the time evolution of the total kinetic energy. As the beta value is increased
in time, interchange modes are excited. However, we do not observe any disruptive phenomena
in the time evolution. A smooth evolution of the axis beta value β0 also indicates no disruptive
event in the core region. Note that the beta value is increased beyond the value at which a
disruptive phenomenon occurs for the fixed equilibrium pressure. In the beta increasing case,
low-n modes are excited and saturated successively. The �m�n� � �5�2�, (4,2) and (3,2) modes
are excited at t � 10800τA, 24000τA and 72000τA, respectively, where m and n are the poloidal
and the toroidal mode numbers. This is due to the property of DI profile. The profile of DI

at �β �� 0�220% is a monotonous decreasing function of ρ as that of �β �� 0�716% shown in
Fig.1. Therefore, modes resonant in the core region are excited at lower beta value than those in
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FIG.3. Time Evolution of kinetic energy Ek, axis beta value β0, average beta value �β � and amount of
heat source term Q0 normalized by magnetic pressure and Alfv́en time.

edge region. As the beta value is increased, each mode is excited just after the pressure gradient
at the resonant surface exceeds the marginal value. Therefore, the driving force is small when
the mode is excited. Thus, even the mode is excited, the excitation is weak and saturation occurs
immediately.

Since the mode excitation is weak, deformation of the pressure profile due to the modes is
limited around the resonant surfaces. This situation is seen in the time evolution of the total
pressure and the stream lines, which are shown in Fig.4. The total pressure varies depending on
the excitation of the modes. However, the structure with the mode number is almost retained
around each resonant surface. This means that each mode is localized around its resonant sur-
face. The localization of each mode is confirmed in the patterns of the stream lines. The vortices
are localized around the resonant surfaces and they do not overlap each other. Figure 4(b) shows
the pressure and the stream lines at almost the same beta value as in Fig.2. Comparison of the
results indicates that the localization of the modes avoids the disruptive phenomenon.

Even after the mode saturation, the beta value is still increased, and therefore, the driving
force should be enhanced. Nevertheless, the mode-overlapping which causes a disruptive phe-
nomenon is suppressed in the time evolution. The suppression is attributed to the deformation
of the background pressure profile. As shown in Fig.5, the weak excitation of a mode generate
local flat structure around the resonant surface in the profile. Such structure decreases the driv-
ing force of the mode and reduces the growth at higher beta. Therefore, the local reduction of
the background pressure gradient due to the nonlinear dynamics is considered to be the stabiliz-
ing mechanism of the LHD plasma. The stabilizing effect is directly seen in the linear stability.
Figure 1 shows the profile of the Mercier quantity DI at �β � � 0�713% and t � 99600τA. The
Mercier stability is locally improved around the resonant surfaces of ί � 2�5, 1/2 and 2/3,
where the local flat structure is generated as shown in Fig.5. Thus, the pressure profile is self-
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(a) (b) (c)

FIG.4. Bird’s eye view of total pressure and stream lines at (a) t � 10800τA (�β � � 0�268%), (b)
99600τA (�β �� 0�713%) and (c) 166800τA(�β �� 1�054%).

organized continuously in the beta increasing LHD plasma so that disruptive phenomena should
be suppressed.

The pressure transport equation involves a term describing a convection due to the nonlinear
dynamics, which corresponds to anomalous diffusion due to the interchange modes. Thus,
we also evaluate the convective transport. Figure 6 shows the time evolutions of the average
pressure flux ��Pṽρ� corresponding to the term. The flux is enhanced at the local flat regions in
the background pressure profile. This result implies that the convection due to the interchange
modes remains to keep the flat structure in the pressure profile. Therefore, from transport time
scales the pressure evolution can be interpreted as a diffusion process with a diffusion coefficient
with a radial structure like the one shown by the flux in Fig.6.

5. Concluding Remarks

By developing a multi-scale MHD scheme for the analysis of beta-increasing plasma, we ob-
tain that the beta value of the LHD plasma unstable to linear ideal interchange modes can be
increased beyond the value at which a disruptive phenomenon occurs for a fixed equilibrium
pressure profile. The stabilizing mechanism is the reduction of the driving force due to the
generation of local flat structure in the background pressure profile. The local flat structure
is successively generated at different rational surfaces by the saturation of the weakly excited
modes. As a result, vorticity overlapping is avoided and disruptive phenomenon is suppressed.
Such self-organization can be revealed only in the analysis with the scheme including the beta-
increasing effect.
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The deformation of the pressure profile is not a simple superposition of each local quasi-linear
change. The generation of a flat region enhances the gradient in the vicinity. The enhance-
ment has a destabilizing contribution to the mode resonant at the region. Therefore, there are
interactions between multiple modes with different helicities through the change of the pressure
gradient. Furthermore, both the continuous heating and the background pressure diffusion have
an effect to smooth out the local flat structure and also influence the interaction between the
modes. Under the situation, the plasma is continuously self-organized as the beta increases so
that the vortices of all of the modes should not overlap as a whole. The result obtained here
indicates the existence of a stable path to a high beta regime obtained in the experiments.
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