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Abstract.  In this paper, we investigate the effects of a new dissipation mechanism, turbulence induced 
viscosity, on the resistive wall mode (RWM) stability. The eigenmode equation for RWM is derived, including 
the turbulence induced viscosity and the plasma flow. The test computations are carried out to study the 
dependence of the mode growth rate on the wall conductivity, for a case without the viscosities and the plasma 
flow. With the turbulence induced viscosity but without flow, the numerical results show that the growth rate of 
the RWM decreases quickly with enhancement of the turbulence induced viscosity. In the presence of the plasma 
flow, the results show that the RWM is completely suppressed when the plasma flow velocity exceeds a critical 
value. Especially, the numerical results show that the turbulence induced viscosity significantly reduces the 
threshold of flow velocity required for the RWM stabilization. The effect of the turbulence induced viscosity on 
the stability window, in terms of the wall minor radius, has also been investigated.  

1. Introduction 

The stabilization of large-scale magneto-hydrodynamic (MHD) modes is necessary for the 
magnetic confinement of toroidal plasma such as the International Thermonuclear 
Experimental Reactor (ITER). In tokamaks, the maximum achievable value of the parameter 
β ( 2

02 P Bβ μ= < > , the ratio of the plasma pressure to the magnetic field pressure) is often 
limited by the external kink modes, which can be stabilized by placing a perfectly conducting 
wall sufficiently close to the edge of the plasma. However, the wall of the actual tokamaks has 
finite conductivity. This converts the external kink mode into a slowly growing MHD mode 
which is called as the resistive wall mode (RWM). The RWM instability can be driven by the 
pressure gradient and the current gradient of the plasma. In this study, we investigate the 
behaviors of the RWM driven by the current gradient of the plasma. 

As for the stabilization of the RWM in tokamak plasma, two approaches are investigated 
extensively during recent years, namely rotational stabilization [1-5] and feedback control 
[6-10]. It has been shown, both in theories and experiments, that the RWM can be completely 
suppressed by the toroidal plasma rotation, provided that the rotation velocity exceed a certain 
threshold value, which is typically a few percent of the Alfven wave speed at the plasma 
centre. And the threshold rotation speed is rather sensitive to the damping model.[10] . The 
physics mechanisms of the rotational stabilization of the RWM have not been fully 
understood. For example, the present MHD theory can not explain the recent experimental 
results [11, 12] clearly, which show that RWM can be stabilized with very slow toroidal 
rotation speed. Understanding the damping mechanism of the RWM is crucial not only for 
studying the critical rotation speed required to stabilize RWM in tokamak plasmas but also for 
understanding other related physics such as the plasma momentum damping. 

In this study, we developed a cylindrical model including turbulent viscosity, which is 
related to the gradients of the magnetic field fluctuation and the plasma flow fluctuation in the 
plasma, and applied this model to study the RWM stability in tokamak plasma. The effects of 
the turbulent viscosity are incorporated into the model via a viscosity term χ  in the 
momentum equation. Authors of Ref.[13] have demonstrated that the role χ  plays in the 



2                                                                           THS/P5-07 

derivation process of MHD equations, actually is the turbulent counterpart of the kinematic 
viscosity ν  (as described in Ref.[13]). Therefore, for simplicity, in the paper we consider χ  
as a control parameter (the same as χ  in Ref.[13] ), the value of which is estimated on the 
basis of the experimental measurements[14].  

2. Eigenmode equation and boundary condition 

We consider the incompressible single fluid MHD equations in the cylindrical plasma. The 
linearized momentum equation, where the damping terms and the plasma flow are involved, 
can be written[3]    

2
1

0 0

1 [ ] ( )Pρω χ
μ μ

⋅
− = ⋅∇ + ⋅∇ −∇ − ⋅∇ + −∇⋅Π −∇× ∇×

B bξ B b b B ξ v ,      (1)  

where ξ，v，b  represent the plasma perturbed displacement, the perturbed velocity and the 
perturbed magnetic field, respectively; ,P  B  and ρ  denote the equlibrium plasma pressure, 
the magnetic field and the plasma density, respectively; ω  is the Doppler shifted frequency 
as that given in [15] with the assumption of uniform equilibrium flow velocity V . 1Π  
denotes the parallel viscosity term induced by the ions collision. The turbulence induced 
viscosity term enters into the momentum equation via the last term shown in Eq. (1), where 
χ  is considered to be the coefficient of the turbulent viscosity which is related to the gradient 
of the magnetic field fluctuation and the flow velocity fluctuation [13]. The value of χ  in 
the paper is estimated based on the experimental measurements [14]. 

The perturbed displacement has the form 1 ˆexp( ),i t ikz imω θ= − + +ξ ξ  where m  is the 
poloidal wave number, k  is the wave number in the longitudinal direction. After tedious 
straightforward manipulations, Eq. (1) can be coordinated to be the 4th order differential 
equation with unknown rrψ ξ=  

4 3 2

4 3 2 1 04 3 2 0C C C C C
r r r r
ψ ψ ψ ψ ψ∂ ∂ ∂ ∂

+ + + + =
∂ ∂ ∂ ∂

,              (2) 

Due to the length limit of the paper, the detailed expression of coefficients in Eq. (2) are not 
shown in the paper. Here, 3C  and 4C  depend on the value ofωχ . We can simplify Eq. (2) 
according to the condition 1ωχ << , which is reasonable for such a low frequency mode as 
the RWM. That is, the 4th and 3rd terms in the eigenmode equation Eq. (2) can be deleted. 
Then Eq.(2) is reduced to be the following 2nd order differential equation   

2

2 1 02 0C C C
r r
ψ ψ ψ∂ ∂

+ + =
∂ ∂

,                        (3) 

where 0 ,C  1,C  and 2C  are the functions of ,r  ˆ ,ω  ,χ  0 ,Ω  0 ,η  ,k  ,m  and ρ . Here, 
ˆ r iω ω γ= +  is the eigenfrequency, 0Ω ≡ ⋅k V  is defined as the plasma toroidal rotation 

frequency, 0η  presents the coefficient of the parallel viscosity. In addition to the parallel 
viscosity and the plasma flow, a new dissipation term, turbulent viscosity has been taken into 
account in the eigenmode equation. The influences of the turbulent viscosity, the parallel 
viscosity and the toroidal rotation on the RWM stability will be investigated in detail in the 
numerical part. 

Boundary conditions are required to resolve the eigenmode equation numerically. We 
consider a cylindrical plasma with the minor radius r a= and the major radius r R= , 
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FIG. 2. The growth rate vs the location of the 
wall for the different wall conductivities. The 
parameters are taken as 0.01,d =  

1.6,aq =  2,m =  and 0.1k = − . No plasma 
rotation and without damping are assumed.
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FIG. 1. The product of the growth rate and 
the wall time vs the denary logarithm of 
wall conductivity. The parameters are 
given as  1.6,aq =  2,m = 0.1k = − , 

1.1,b =  and 0.01,d =  where aq  is the 
safety factor at the plasma edge. 
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surrounded by a resistive wall at r b= , with the wall thickness d  and conductivity σ . The 
wall diffusion time is defined as 0w bdτ μ σ= , where 0μ  is the magnetic constant. At the wall 
position ( r b= ), the perturbed magnetic field 1

v
rB  in the vacuum is continuous across the 

wall surfaces and meanwhile satisfies the thin wall jump condition. At the plasma-vacuum 
interface ( r a= ), both the perturbed radial magnetic field and the perturbed pressure are also 
continuous. The perturbed pressure condition can be obtained by integrating the radial 
component of Eq. (1) across the plasma-vacuum surface, where the turbulent viscosity 
correction has been taken into account.  

3. Numerical results 

In this section, we present the computational results obtained by solving the eigenmode 
equation numerically. We investigate the effects of the turbulent viscosity χ , the toroidal 
rotation frequency 0Ω , the parallel viscosity 0η , the wall position b  and the wall 
conductivity σ  on the RWM in detail. Here the frequencies ω , 0Ω , and 1/ wτ , the 
coefficients ,χ  0 ,η  the wall conductivity ,σ  the length scales ,r  ,b  ,d  and 1/ k  are 
normalized to ,Aω  ,AaVρ  2

01/ ,A aω μ and ,a  respectively, where A A RVω ≡  and 

0AV B μ ρ= , AV  is the Alfven wave speed. In the following numerical researches, we 
consider the large aspect ratio equilibrium configuration, with 

zB constant= , 2 2[1 (1 ])aB B r rθ θ= − − , 2
0(0,0, (1 ))J J r= − , P∇ = ×J B , and 10R a = . In 

addition, we assume that the turbulent viscosity, the plasma equlibrium density and the 
toroidal rotation are constants along the minor radius.  

Without the plasma flow and any damping, we calculate the product ( wγτ ) of the growth 
rate and the wall time as the function of the denary logarithm of the wall conductivity, which 
is shown in Fig.1. The computations show that, at high enough wall conductivity, the value of 

wγτ  tends to be a constant, in other words, the mode growth rate scales is inversely 
proportional to the wall time, then the growth rate of the instability is determined by the wall 
conductivity. The result is consistent with that shown in [16]. Figure 2 shows the dependence 
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of the RWM growth rate on the wall position for the different wall conductivities. The 
computations identify a critical wall radius 1.15cb ≈ . In the region cb b< , the growth rate of 
the instability decreases significantly as the increase of the wall conductivity. However, it is 
shown that the perfect conducting wall ( 910σ = ) can not make the marginal stability ( 0.0γ ≈ ) 
become a completely stability ( 0.0γ < ). Thus, the damping terms or other stable effects are 
required for the full stabilization of the RWM. On the other hand, in the region cb b> , the 
RWM growth rate increases significantly as the increase of the wall position for the given 
wall conductivity. If the wall position is more further from the plasma surface, the wall does 
not have any effect on the growth rate, even the wall is perfectly conducting.  

 
Figure 3 plots the RWM growth rate versus the coefficient of the turbulent viscosity with 

the different parallel viscosities but without plasma rotation. It can be seen that the growth 
rate γ  decreases largely with the increase ofχ . That is, the turbulent viscosity has a strongly 
stable effect on the RWM instability. For the present case without the plasma flow, the RWM 
instability can not be completely stabilized (i.e. 0.0γ < ), even the value of χ  is significantly 
large. Furthermore, it is found that the parallel viscosity has the stability influence on the 
RWM . The mode frequency for these cases nearly vanishes, that is, 0.0rω ≈ .    

Shown in Fig. 4 is the RWM growth rate as the function of the turbulent viscosity for the 
different toroidal rotation frequencies 0Ω . The results show that the RWM can be completely 
suppressed when the turbulent viscosity is larger than a critical value for a certain value of 

0Ω . The critical values of turbulent viscosity are, respectively, 0.085cχ =  and 0.04cχ = for 

0 0.04Ω = (red-dotted line) and 0 0.06Ω = (blue-dotted line). Thus, the larger 0Ω  needs the 
smaller cχ  for the completely stabilization of RWM. Based on Eq.(15) in [13], the value of 
χ  is estimated by the formula 4 20.07( / ( / ) )(1/ )A pB B r aVχ δ δ ρ σ≈ ∂ ∂ , where pσ  denotes 
the plasma conductivity and Bδ  is the perturbed magnetic field. According to [14], the 

FIG. 4. The RWM growth rate vs the 
turbulent viscosity coefficient for the 
different values of the plasma toroidal 
rotation. It is shown that the RWM can be 
fully stabilized when the turbulent 
viscosity is larger than a certain value for 
the cases 0 0.04Ω =  and 0 0.06Ω = .The 
parameters are the same as these used in 
Fig. 3, but 0 0.1η =  
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FIG. 3.  The RWM growth rate vs the 
turbulent viscosity coefficient for the 
different values of the parallel viscosity 
coefficient. Here, the plasma toroidal 
rotation is not taken into account. The 
parameters are assumed as 1.6,aq =  

510 ,σ = 1.1,b = 0.01,d = 0 0.0,Ω =
2,m = 0.1k = − . 
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fluctuation of the magnetic field is represented by the analytical expression: 
2 9 9 5( ( ) / ) 0.25 10 7.7 10 ( / )B r B r aδ − −= × + × . The value of χ  is in the order of 0.1,  which is 

normalized by ,AaVρ  where the experimental parameters are taken as 3.7 ,B T=  
0.75 ,a m= 8 1 110p mσ − −= Ω  , the density 19 34 10n m−= × , respectively.  

In the presence of the plasma toroidal rotation, the mode frequency is not equal to zero 
anymore, but has a finite value. Figure 5 shows the influences of the turbulent viscosity, 
plasma flow speed and parallel viscosity on the mode frequency. The computations show that 
the mode frequency increases with the enhancement of the turbulent viscosity when the 
plasma flow is taken into account. Furthermore, for the given 0Ω  and χ , the mode 
frequency corresponding to the 0 0.2,η =  is larger than that corresponding to 0 0.0η = . In 
Fig. 6, both the real frequency and the growth rate of the RWM are plotted as the function of 
the toroidal plasma rotation frequency 0Ω . The RWM growth rate monotonically decreases 
with the increase of the value of 0Ω . It is noted that, when the plasma rotation frequency is 
larger than a critical value, 0.03cΩ = , the RWM instability can be fully stabilized. In addition, 
it can be seen that the mode frequency is roughly proportional to the plasma rotation 
frequency in a small slope at the beginning when 0 cΩ < Ω ; As the further increase of the 0Ω , 
when 0 cΩ ≈ Ω , the mode frequency reaches a maximum value; When 0 cΩ > Ω , the mode 
frequency decreases gradually with the further increase of 0Ω .  

In order to investigate the dependence of the critical rotation frequency required for the 
RWM stabilization on the turbulent viscosity χ  in detail. Figure 7 plots the critical rotation 
frequency as the function of turbulent viscosity for the different parallel viscosities. The 
numerical results show that the critical rotation frequency CΩ  decreases rapidly with the 
enhancement of the χ  for a given 0η . Furthermore, Figure 7 also indicates that the presence 
of the parallel viscosity reduces the critical toroidal rotation frequency required for the RWM 
stabilization. However, the influence of the parallel viscosity on the critical rotation frequency 
become smaller and smaller as the increase of the turbulent viscosity. Finally, the effects of 
the 0η  would vanish when the value of χ  is larger enough. The critical toroidal rotation 

FIG .5 .The real frequency of the 
RWM vs the turbulent viscosity 
coefficient for the different values of 

0η  and 0Ω . The turbulent viscosity 
coefficient varies from 0.0 to 0.15. 
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FIG. 6. The real frequency (blue-square 
line) and the growth rate of the RWM 
vs the plasma toroidal rotation. The 
viscosity coefficients are assumed as 

0 0.2η = , and 0.1χ = , respectively. 
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FIG. 7. Plotted is the dependence of 
the critical toroidal rotation 
frequency on the turbulent viscosity 
coefficient χ  under various 0η  
( 0 0.1η = , 0 0.2η = , and 0 0.3η = ). 
Different colors for the curves 
correspond to the different choices of 
the parallel viscosity coefficient.  
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frequency obtained in the paper is larger than 
the experimental result[11, 12], due to that the 
other stable effects, such as Alfven wave 
damping, sound wave damping and kinetic 
damping, have not been taken into account in 
the present model.  

The behavior of the stability window in 
terms of the wall minor radius has also been 
studied. Figure 8 plots the mode growth rate 
versus the wall position with the different 
plasma toroidal rotation frequencies for the 
given χ  and 0η . It is identified that, when 
the plasma rotation frequency reaches a 
certain value, 0 0.05Ω＝ , a stability window 
appears in the wall position. The effects of the 

0Ω  on the stability window are similar to that 
shown in Ref. [3]. However，the presence of 
χ  reduces the critical value of the 0Ω  
required for the appearance of the stability window. We also study the effect of the turbulent 
viscosity on the stability window. For the case 0 0.2η =  and 0 0.05Ω = , we calculate the 
growth rate by varying the wall distance b  for different values of χ . It is presented that, 
when the turbulent viscosity χ  reaches a certain value, the stability window also appears in 
the wall position as that shown in Fig.9. A further increase in χ  widens the stability window 
toward the plasma boundary. The right side of the stability window is very close to cb  and 
change little with the χ , while the left side significantly depends on it. We can notice that, the 
role of the damping terms, such as the turbulence viscosity, on the stability window is similar 
to that of the plasma rotation frequency on the stability window. 

 

FIG.9. The growth rate vs the wall 
position for various turbulent viscosity 
with the fixed plasma toroidal rotation 
and the parallel viscosity. The 
parameters are assumed as 1.6,aq =  

510 ,σ = 1.1,b = 0.01,d = 2,m =  
0 0.2,η = 0.1k = − and 0 0.05Ω = . 

 

FIG.8. The growth rate vs the wall 
position for the different values of 
toroidal rotation frequency. Here, the 
values of the χ  and 0η  are fixed, 

0.05χ =  and 0 0.2η = . The 
parameters are assumed as 1.6,aq =  

510 ,σ =  1.1,b =  0.01,d =  2,m =  
and 0.1k = − . 
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4. Conclusions  

In this paper, an eigenmode equation in the tokamak plasma is derived, which considers the 
turbulent viscosity, the parallel viscosity and the plasma flow. We have numerically solved the 
eigenmode equation to obtain the normalized growth rate and the real frequency of the RWM 
with the appropriate boundary conditions.  

The computations show that the turbulent viscosity has the stable influence on the RWM 
instability. In the presence of the plasma flow, the numerical results show that the RWM is 
completely suppressed when the plasma rotation frequency exceeds a critical value CΩ  for 
the given χ  and 0η . The critical rotation frequency CΩ  significantly decreases with the 
enhancement of the turbulent viscosity. The results indicate that the presence of the parallel 
viscosity also reduces the critical toroidal rotation frequency required for the RWM 
stabilization. It is also observed that, when the turbulent viscosity reaches a certain value, the 
stability window first appears in the terms of the wall minor radius. The width of the stability 
window is proportional to the value of the turbulent viscosity coefficient. In addition, it is 
presented that, when the mode starts to be stabilized, the real frequency of the mode reaches a 
maximum value, and then decays gradually. The calculations show that the mode frequency is 
proportional to the damping terms, such as turbulence viscosity, when the plasma rotation is 
taken into account.  

In the paper, we investigated the effects the turbulent viscosity and the plasma flow on 
the RWM which is driven by the plasma current gradient. However, the conclusions obtained, 
such as that the turbulent viscosity has the stable effect on the RWM, are expected to be 
applicable qualitatively for the pressure driven RWM. 
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