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Abstract. Non-linear MHD simulations of ELMs show features that are in good qualitative agreement with 

experimental observations. The formation of density filaments are due to the ballooning mode convection wheras 

the sub-structure in the heat deposition profile on the divertor target is dominated by the magnetic field 

perturbation of the ballooning instability. A first study of the ELM size as a function of collisionality shows an 

increasing ELM size with decreasing collisionality but only in the ‘ideal’ MHD regime. The increased losses at 

lower collisionality are due to the larger parallel heat conduction: the change in the temperature profile increases 

whereas the convected density losses do not vary with decreasing collisionality. 

MHD simulations of pellets ‘injected’ in an H-mode pedestal can lead to the destabilisation of a ballooning mode 

due to the high pressure in the pellet cloud for pellet larger than a critical pellet size. In x-point plasmas, the non-

linear MHD simulations indicate a partial direct loss of the pellet density when the pellet cloud arrives at the x-

point. This results in a single spiral in the target heat deposition profile, similar to what has been observed in JET 

experiments. This structure expands in the toroidal direction with the pellet cloud expanding with the local sound 

speed. 

 

1. Introduction 

 

Edge localised Modes (ELMs) are a characteristic feature of the H-mode plasma regime, the 

standard operation scenario in ITER. ELMs are understood to be MHD instabilities 

(ballooning modes) destabilised by the large pressure in the H-mode edge pedestal [1-6]. The 

instability causes energy losses on a fast MHD timescale leading to large energy fluxes to the 

plasma facing components.  

The current estimate of the ELM induced energy losses in ITER results from an extrapolation 

of the energy losses due to ELMs from current machines towards ITER, based on the 

experimentally observed scaling of the ELM size with the plasma collisionality [7]. There is 

as yet no firm explanation of the observed scaling neither theoretical nor from numerical 

simulations. One important open question is which physical mechanisms and parameters 

determine the ELM size, i.e. the ELM induced energy losses. The predicted ELM size in ITER 

is such that the ELMs would lead to an enhanced erosion of the plasma facing components. 

As a consequence the ELM size in ITER will need to be controlled. One option is to 

significantly increase the natural ELM frequency by an external trigger. The injection of 

pellets into the H-mode pedestal has been shown to trigger an ELM or ELM like event at each 

injected pellet [8-9]. At a large enough pellet frequency, this leads to a synchronisation of the 

ELMs to the pellet injection frequency. The origin of the trigger of the ELM due to a pellet is 

still largely unknown. 

Non-linear MHD simulations of ELMs can contribute to clarify the physics of ELMs (the 

onset, amplitude, energy fluxes) and ELM control methods and contribute to an interpretation 

of the detailed experimental observations of ELMs. In this paper, results are presented on the 

non linear MHD simulation of ELMs and of pellets, modelled as a large density source, 

injected in the H-mode pedestal. 
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2. Non-linear MHD simulation code JOREK 

 

The non-linear MHD simulations of ELMs and pellets described below have been obtained 

with the non-linear MHD code JOREK. In the JOREK code, both the physics variables and 

the (R,Z) coordinates of the poloidal plane are discretised by so-called (isoparametric) cubic 

Bezier finite elements [10]. The discretisation leads to a continuous representation of the 

variables and their derivatives (energy fluxes). The finite element grid in the poloidal plane is 

aligned with the equilibrium flux surfaces, both inside the separatrix on the closed field lines 

as on the open field lines. This allows an accurate treatment of the strong anisotropy 

perpendicular and parallel to the magnetic field. The toroidal variation is described by a 

Fourier series. 

The time advance is using a fully implicit scheme (linearised Crank-Nicholson) on all 

equations and all variables in one single step. The resulting sparse system of equations is 

solved using a GMRES iterative solver. As a preconditioner, the sub-matrices of each of the 

toroidal harmonics are solved using the direct parallel sparse matrix solver PaStiX [11].  

Both the full MHD model and reduced MHD models are available in JOREK. For the study 

presented here, the following reduced MHD model has been applied. The velocity and 

magnetic field are represented with the ansatz: ( ) ( ) ( )0
1B F R e R t eϕ ϕψ= + ∇ ×

� �� �
 and 

( ) ( )v R u t e v t Bϕ= − ∇ × +
�

� �� �
. Inserting this in the usual visco-resistive MHD equations yields the 

reduced MHD equations for the density, temperature, poloidal flux, electric potential and the 

parallel velocity (equivalent to [12]), in toroidal geometry. Time (as shown in the figures) is 

normalised to 
N

t t τ=�  with 0N D Dm nτ µ= . 

The boundary conditions on the boundary parallel to the magnetic flux surfaces are Dirichlet 

conditions, all perturbations to the equilibrium are zero. On the open field lines the parallel 

velocity is set to Mach one (corresponding to the Bohm condition). The temperature and 

density have free flow boundary conditions. 

 

3. Non linear MHD simulation of ELMs 

 

ELMs are generally thought to be due to ballooning (or peeling ballooning) modes which are 

destabilised by the large pressure gradient (and edge current density) in the H-mode edge 

pedestal. The evidence for this model for the ELMs is mostly based on the good agreement 

between the measured pedestal pressure gradient and the calculated linear MHD stability 

limits [1-6]. Nonlinear MHD simulations are necessary to be able to characterise the 

consequences of a ballooning instability and compare these with the detailed experimental 

observations on ELMs that are now available. 

Due to the difference in time scales between the slow equilibrium evolution and the fast time 

scales of an ELM (~200 µs), non-linear MHD simulations of ELMs typically start from a 

ballooning mode unstable equilibrium. The initial equilibria are defined by the choice of the 

flux at the domain of the computational domain and the density, temperature and current 

profile as a function of the poloidal flux. The data are either chosen to be “JET-like” 

equilibria or, more recently, accurately reproducing a time slice from a well-diagnosed JET 

discharge (#73569) [13]. 

The initial static solution of the Grad-Shafranov equation is evolved non-linearly (for several 

hundred Alfven times) to obtain a quasi-stationary axi-symmetric equilibrium with self-

consistent flows. FIG. 1 shows the resulting amplitude of the poloidal flow for JET discharge 

#73569. The poloidal flow is driven by the pedestal pressure gradient in the presence of 

dissipative terms (resistivity, diffusivity) amplified by the presence of an x-point [14, 15, 16]. 

The poloidal flows can be large enough to cause a significant reduction of the ballooning 
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mode growth rates, especially for the higher toroidal 

mode numbers. The poloidal equilibrium flow also 

has an influence the non-linear evolution [14,15]. 

The flow in the parallel direction is predominantly 

caused by the Bohm boundary conditions at the 

divertor target.  

The non-linear evolution of the ballooning modes 

shows two very characteristic features: the formation 

of density filaments and a fine structure in the radial 

profile of the heat deposition on the target. These 

features are qualitatively in good agreement with the experimental observations. FIG. 2 shows 

the filaments and the density and temperature profiles of an ELM simulation in a JET-like 

equilibrium (
0 3.1R = , 

0 2.9B = , 
99 2.8q = , 1.1

N
β = , pedestal-width 4cmδ = ) at the time of the 

maximum of the perturbation [17]. The simulation includes the toroidal harmonics 0 21n = −  

with a periodicity 3. (Other parameters are resistivity ( ) 60 5 10η −= × , viscosity 510ν −

⊥ = , 

diffusivity 52 10D
−

⊥ = × , 65 10κ −

⊥ = × , 10κ =
�

.) 

Filaments are formed due to the flow pattern (vortices) of the predominantly n=9 ballooning 

mode. The interchange type mode moves high density plasma outwards (in the form of field 

aligned filaments) and low density “holes” inwards. This creates the characteristic 

perturbation to the density profile with a local minimum in the density behind the outward 

moving density filament as measured during ELMs by the high resolution Thomson scattering 

in MAST [18] and JET [19]. The ballooning mode itself induces an additional n=0 flow 

which can be in the same direction or opposite to the equilibrium poloidal flow and change 

direction during the ELM evolution. The n=0 flow is shearing the filaments from the main 

plasma and limits the amplitude of the filaments. Immediately after the shearing-off of the 

first set of filaments, there may be several additional bursts of filaments leaving the plasma. 

This results in a bursty behavior of the density and energy losses. FIG. 2b shows the loss rate 

of density and energy through the separatrix as a function of time during the ELM simulation. 
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FIG. 2a The density (right) and temperature (left) 

profiles together with the density filaments outside 

the separatrix. 

FIG. 2b The time evolution of the relative loss 

rate of the total density and total thermal energy 

inside the separatrix (in units of 
N

τ ).and the 

kinetic energy of the dominant n=9 mode. 

In addition to the flow, the ballooning mode also creates a large magnetic perturbation. The 

perturbation is large enough to cause a significant ergodisation of the plasma edge in an area 

of 2-3 times the pedestal width. FIG. 3b shows a Poincare plot of field lines which have been 

traced from within the (unperturbed) separatrix. It shows the formation of very thin radially 

extended structures around the x-point becoming broader further away from the x-point. 

These structures are characteristic of so-called homoclinic tangles [21,22]. 
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FIG.1 Equilibrium poloidal flow (blue) in 

MHD simulation of JET discharge 
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Due to the large parallel conduction, the temperature is close to constant on a magnetic field 

line. As a consequence the perturbed temperature profile during the ELM closely resembles 

the structure of the magnetic field perturbations due to the ballooning modes. This results in a 

fine structure in the temperature at the divertor target forming spirals in the toroidal direction 

(FIG. 3a). The structures in the temperature translate to structures in the heat convected along 

the field lines to the target. The radial width of these structures in the JET-like simulations is 

1-2 cm, agreeing qualitatively with the experimentally observed structures [23-25]. 
 

 
 

FIG. 3a Temperature in a poloidal plane and at 

the divertor target at the time of maximum ELM 

amplitude. 

FIG. 3b Poincare plot of field lines starting 

inside the (unperturbed) separatrix. Color 

indicates the connection length. 

ELM size scaling 

The most robust scaling of the amplitude of the ELM energy losses as observed 

experimentally is the scaling of the ELM size with the collisionality *ν  [7]. To try to identify 

the influence of the collisionality on the ELM size in non linear MHD simulations, the ELM 

simulations are repeated while varying the density. Since the equations are normalized with 

respect to the density, the starting static equilibrium remains unchanged and only the 

coefficients such as the resisivity, diffusivity, conductivity and viscosity will change with 

collisionality. The parallel heat conduction κ|| has the strongest collisionality dependence, 
*1κ ν

�
∼ , the other coefficients scale as * 1/6ν − . Note that this scan is not at constant *ρ . The 

starting equilibrium is JET discharge #73569, reconstructed from the electron pressure profile 

just before the ELM onset using the (coherent ELM average) HRTS profiles [19], the EFIT 

current density profile to which the edge bootstrap current has been added and the poloidal 

flux on a contour close to the JET vessel. These simulations have been done using the reduced 

MHD model with ion and electron temperatures, at very high poloidal resolution (with up to 

22000 cubic finite elements) while using one single toroidal harmonic (in addition to 0n = ) at 

the time. 

FIG. 4 shows the collisionality dependence of the growth rates and the ELM size for the JET 

equilibrium and a resistivity of 710η −=  at * 1ν = . The ELM size scaling in this case is 

opposite to the experimental scaling. This is due to the dependence of the mode growth rates 

on the resistivity (the equilibrium is only marginally unstable to ideal MHD ballooning 

modes). In order to investigate the regime where the ballooning instability is closer to the 

ideal MHD regime, the edge pressure gradient is (artificially) increased by 50% (by reducing 

the pedestal width) and by choosing a resistivity of 810η −=  at * 1ν = . In this ‘ideal’ regime, 

the growth rates do not show a strong dependence on the collisionality. The scaling of the 

ELM size with collisionality now has the same trend as in experiment. The increase of the 

ELM energy losses with collisionality in these simulations is mainly due to the increasing 

parallel conduction losses with decreasing collisionality. This is also reflected in the scaling of 

the density and temperature losses (FIG. 4). The relative density losses do not show a 
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dependence whereas the relative temperature losses increase at lower collisionality [13].This 

trend is similar to the experimental observations [19]. The importance of parallel conduction 

losses has been discussed for example with respect to ELMs in JET [19] and in theoretical 

ELM models [20]. 

An additional scaling can be expected from the collisionality dependence of the most unstable 

mode number and the dependence of the bootstrap current which have not been taken into 

account in this initial study. Note that the ELM size dependence does not yet consider the full 

ELM cycle. It does include the ELM relaxation from a given unstable state to a relaxed state. 

For a complete ELM cycle several consecutive ELMs will need to be simulated. This is a 

formidable numerical challenge due to the different time scales involved. 
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FIG.4 The collisionality dependence of the growth rate (left), the relative ELM size (middle) and the 
relative density and temperature losses (right) for the original JET simulation (blue, open symbols) 

and the simulation with increased edge pressure gradient (red, closed symbols). 

 

4. Non linear MHD simulation of pellets in the H-mode pedestal 

 

The injection of pellets into the H-mode pedestal is one of the methods of ELM control 

foreseen in ITER. Experimentally, it is observed that pellets trigger an ELM or ELM-like 

event when injected in the H-mode pedestal. The ELM can be triggered in any phase of a 

natural ELM cycle (except immediately after a natural ELM). Injection of a pellet in Ohmic, 

L-mode and QH-mode plasmas also yields a (smaller) magnetic perturbation but not an 

ELM-like event [26]. In AUG it was shown that the ELM is triggered when the pellet reaches 

the middle of the transport barrier, independent of the velocity and mass of the pellet [27]. 

The cause for the trigger is still largely unknown.  

To study the possible causes for the pellet trigger of an ELM or ELM-like event, the 

evolution of the H-mode plasma with an injected pellet is simulated with the non-linear 

MHD code JOREK. The pellets are modelled as a large localised (non-moving) density 

source localised in the middle of the H-mode pedestal. The consequence of the large 

(adiabatic) density source is a strong increase in the local density and a local cooling of the 

temperature at the position of the density source. Due to the large parallel heat conduction, 

the temperature is partially restored leading to an increase in the pressure in the pellet cloud. 

This increase in pressure drives the parallel convection which spreads the density 

perturbation along the magnetic field with the local sound speed.  

The influence of the amplitude of the pellet source and its position (low-field or high field 

side) on the possible trigger of a ballooning-like instability has been studied, first in circular 

plasmas [28]. The initial equilibria ( 3.0mR = 0.92ma = ,
0 3.0TB = , 1.6MAI = , 0.6

p
β = ) are 

characterized by a large pressure gradient at the edge, representing the H-mode edge pedestal. 

The equilibrium is marginally stable to ballooning modes with toroidal mode numbers used in 

the simulation ( 0 15n = − ). The pellet is represented by a particle source at mid-pedestal (at 

2.2q = ) with a horizontal, vertical and toroidal width of 3 cm by 23 cm by 70 degrees resp. 
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The source amplitude has been varied from 23 12.1 10S s
−= ×  to 24 12.1 10S s

−= ×  (assuming a 

central density of 19 35 10 m
−× ). The central resistivity used in the simulations is 85 10η −= × , the 

ratio of the parallel to perpendicular heat conduction is 
72.5 10κ κ⊥ = ×

� . The grid size is 

defined by 51 radial cubic C
1
 finite elements, strongly packed around the pellet position, and 

128 poloidal elements. At 24 12.1 10S s
−= ×  the pressure and density at the source build up in 

typically 10 Nτ  ( 0N D Dm nτ µ=  at 19 35 10Dn m
−= × , 74.6 10

N
sτ −= × ), after which they remain 

relatively constant. The maximum density increases locally by a factor ~7 and the pressure by 

a factor ~5. On the same time scale, there is fast increase of the low-n toroidal harmonics.  

The plasma response to the pellet consists of two phases. The initial response scales linearly 

with the amplitude of the pellet source. This response is most likely due to the loss of 

equilibrium due to the pressure perturbation. The induced electric field leads to the well-

known E B×  drift of the pellet. FIG. 5a shows the evolution of the kinetic energy for the 

modes 8 15n = −  for 3 values of the pellet amplitude ‘injected’ on the low-field side. 
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FIG.5 The evolution of the kinetic energy of the harmonics n=8-15 as a function of the pellet size 
(particle source) for pellets at the low-field side mid plane. The density and flow contours for the 
source rate 24 12.1 10S s

−= ×  (middle) and 24 10.57 10S s
−= ×  (right). 

For large enough pellets, a ballooning type instability develops in addition to the linear 

response. On the low-field side the instability deforms the pellet cloud into a filamentary 

structure moving outwards. The pellet cloud remains unstable when it has expanded to the 

high-field side after 2 100
s N

R cπ τ∼ . On this side, the instability develops on the inside of the 

pellet cloud where the pellet pressure gradient is destabilising in the good curvature region. 

Here, the ballooning instability develops fingers inwards. FIG. 5 shows the density and flow 

contours for a large unstable pellet cloud compared to a smaller stable case. The critical 

amplitude above which the ballooning instability develops is 24 11 10S s
−< × . The cause for 

destabilization is the high pressure inside the high density plasmoid and the associated local 

increase of the pressure gradient. The local cooling of the plasma due to the density source 

leading to an increase in the resistivity will also contribute to the destabilization. 

For a pellet source on the high field side at mid-pedestal the behavior is globally very similar 

to the low field side pellets. Also in this case a ballooning mode can develop for large enough 

pellets (see FIG. 6). The instability develops first at the high field side plasmoid before the 

density perturbation has reached the low field side. This leads to density filaments being 

injected further into the plasma (see close up in FIG. 6, right). Only when the density 

perturbation reaches the low field are density filaments moving out of the plasma. The critical 

amplitude for the onset of the ballooning instability is very similar for high field side and low 

field side pellets.  
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FIG. 6 The evolution of the kinetic energy of the harmonics n=8-15 as a function of the pellet size 
(particle source) for pellets at he high field side mid plane. The density and flow contours for the 
source rate 24 12.1 10S s

−= ×  (middle) at 250
N

t τ=  with a close-up view of the high field side pellet 
cloud (right).  
 

The evolution of the plasma response to a ‘pellet’ (a large localized density source) in a JET-

like H-mode plasma at mid-pedestal (
0 3.1R m= , 0.89a m= , 2.9B T= , 3.2I MA= , 1.0

N
β = ) is 

qualitatively the same as in described above for circular plasmas. The pedestal pressure is 

chosen such that it is marginally stable to ballooning modes (for the mode numbers (n=0-15) 

and the resistivity, 85 10η −= × , used in the simulation). FIG. 7a shows the density contour, at 

the density on axis, of the pellet cloud at 217
N

t τ=  after the start of the pellet source at a 

source rate of 24 12.1 10S s
−= ×  in the outer mid-plane. At this time the number of ions has 

increased by 3.8%. At this large source rate, there is a ballooning-like instability developing 

with a (predominantly) single helical perturbation consisting of many coupled toroidal 

harmonics. The simulations are not advanced to the point where (possibly) a filament is 

ejected from the plasma. 

  

FIG.7a Density contour (central density, yellow) during 
pellet injection and the temperature on the (unperturbed) 
separatrix after 217 Nτ  with 3.8% additional particles 
injected. Temperature on the separatrix (blue-red scale).  

Fig. 7b Density (color) and flow lines 
showing the prompt losses of density 
at the x-point causing a spiral in the 
convected heat flux at the target. 

The heat flux convected to the target during the pellet evolution shows the formation of 

toroidally localized heat flux (after about 130
N

τ  after the start of the pellet) at the position 

where the density (and temperature) perturbation reaches the x-point (see FIG.7b). At the x-

point, the density flows across the separatrix onto the outer target. These ‘prompt’ density 

losses lead to a spiral structure in the heat flux with one ‘stripe’ in addition to the normal 

strike-point. This structure is qualitatively very similar to the structure in heat deposition 

profile with a single additional maximum observed during the JET pellet triggered ELMs 

[29]. In the MHD simulations this additional peak in the heat flux extends in the toroidal 
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direction on a time scale of 100 Nτ  (approx. the local sound speed) to cover almost ¾ of the 

toroidal circumference. At this time most of the additional heat flux occurs at the original 

strike-point. In contrast to the ELM simulations, the magnetic perturbation does not cause a 

large ergodisation. There is an ergodic layer of about 2 cm inside the separatrix but no large 

structures due to homoclinic tangles as in the ELM simulations. The single spiral in the target 

heat deposition is due to density convected through the x-point and is not (as in the case of 

natural ELMs) directly related to the magnetic perturbation. 
 

5. Conclusions 
 

A first study of the ELM size in non-linear MHD simulations shows an increasing ELM size 

with decreasing collisionality in the ‘ideal’ MHD regime (albeit with a weaker dependence). 

The heat conduction parallel to the ergodised magnetic field appears to be the dominant effect 

leading to larger temperature losses at constant density losses with decreasing collisionality.  

The pressure in the pellet cloud in the H-mode pedestal can trigger a ballooning instability 

leading to an initially single helical perturbation consisting of many toroidal harmonics. The 

non-linear MHD simulations show partial prompt density losses of the pellet cloud when 

arriving at the x-point. This leads to an additional spiral structure in the heat deposition profile 

on the target similar to the structures observed in the JET pellet injection experiments. 
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