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Abstract. Magnetic shear effect on spontaneous flow generation in reversed shear plasmas is investigated based 
on global gyro-fluid ITG simulations. Off-resonant modes around q-minimum region are taken into account as 
well. The excitation of off-resonant mode due to the toroidal mode coupling is observed in the nonlinear 
saturation phase. Intermittent growth of zonal flow in a case with relatively flat negative magnetic shear is 
observed. In the flat negative shear case, intermittent burst with a long period occurs besides small-scale 
avalanche around q-minimum. The burst propagates large extent in the radial direction, and contributes to the 
enhancement of zonal flow in the vicinity of q-minimum position. In the strong turbulent state, the magnetic 
shear affects on the flow generation by means of the nonlocal and intermittent turbulent transport.  
 
 
1. Introduction 
 
Understanding of internal transport barrier (ITB) [1] formation mechanism is one of the most 
crucial issues to establish advanced operation scenario in ITER or the other modern magnetic 
confinement devices. So far a number of experimental, theoretical and simulation studies have 
been dedicated, and our understanding of ITB has made significant progress [2, 3].  
 Mean ExB flow shearing [2, 4], negative magnetic shear and magnetic well [5], negative 
magnetic shear [6], rational surface gap in zero-shear region [7], zonal flow [8], and selective 
turbulence spreading [9], Geodesic Acoustic Mode (GAM)[10], etc., have been reported as 
possible factors of ITB formation. However, fully dynamical spontaneous formation of ITB 
has not been simulated by direct simulation. Theoretical understanding of whole mechanism 
and needed condition for barrier formation has not been fully revealed. Though equilibrium 
ExB flow shear is widely recognized as the most plausible player in ITB formation, 
dynamical explanation of growth of radial electric field has not been given. Recent 
experimental studies show that poloidal rotation profile in triggering event of ITB formation 
does not agree with neo-classical estimation (excursion) [11,12]. Linear stabilization of ion 
temperature gradient driven drift wave (ITG) mode by negative magnetic shear and self-
regulation of ITG mode by zonal flow generation are important in turbulence simulation but 
not so strong as to be responsible in internal barrier formation by alone. Zero-shear gap 
around q-minimum region in reversed magnetic shear configuration is also effective feature to 
provide quiescent region in vicinity of q-minimum position when we neglected off-resonant 
modes, i.e. modes do not have rational magnetic surface in plasma. 
However, it has been argued that, off-resonant modes are excited around q-minimum region 

and the envelope of ballooning mode smoothly provides anomalous transport over the zero-
shear gap. Such ITG mode in flat shear region had been investigated by the use of global 
gyro-kinetic simulation and was found to be “slab-like” [13]. It was also observed that even in 
the absent of off-resonant micro-mode, meso-scale off-resonant mode can grow over the gap 
and destroys the barrier-like structure [14].  
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 In the present work, we report the magnetic shear effect on flow generation in the strong 
turbulent state. Off-resonant modes around q-minimum are taken into account and heat source 
simulation is performed. Magnetic shear effect on the excitation of off-resonant mode due to 
the toroidal mode coupling is investigated. Intermittent growth of zonal flow in a case with 
relatively flat magnetic shear is observed. In the flat shear case, larger-scale intermittent burst 
is caused by ITG turbulence followed by the temperature profile modification by avalanche. It 
is found that, the enhancement of zonal flow is attributed to nonlocal and intermittent 
turbulent transport. 
 
 
2. Simulation Model 
 
We employ 3-field electrostatic gyro-Landau-fluid model to investigate ITG turbulence 
around q-minimum region considering off-resonant modes as well [9,15-18]. Heat source 
simulation is performed with a source profile in the quadratic form. Four safety factor profiles 
with the same q-minimum (q_min=1.35) and different magnetic shear in core region (r<0.6) 
are examined. 
 
2.1. Set of Model Equations 
 
The model consists of Vorticity equation coupled with continuity equation, parallel 
momentum equation and ion temperature evolution equation; 
 

 
 

  
 

 
 
where, 

 

 

 
 
 The adiabatic electron response is assumed for simplicity. Toroidal effect is included via 
curvature operator  into cylindrical geometry. Normalization is taken as,  
 

,where  is Bohm diffusion coefficient.	
 

 and . 
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Up = Ṽ‖ + ρ∗

q
ε

∂F̃
∂r̄

∇̄‖ =
1
q

(
q
∂

∂z̄
+
∂

∂θ

)

κn̂ = −
dn̂
dr̄

κT̂ = −
dT̂
dr̄

εa =
a

R0
ε =

r
R0

ρ∗ =
ρs

a
ρs =

cs

Ωs

(
t

a2/χB
,

r
a
, a∇⊥, R0∂/∂z

)
→
(
t̄, r̄, ∇̄⊥, ∂/∂z̄

)

χB =
Te0

eB
= ρscs : Bohm diffusion coefficient

(
n1

n0
,

neq

n0
,
Φ1

T0/e
,

V‖ 1

cs
,

T1

T0
,

Teq

T0

)
→
(
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w̃ = ñ − ρ2
∗∇̄2
⊥F̃ F̃ = Φ̃ +

p̃
τ
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w̃ = ñ − ρ2
∗∇̄2
⊥F̃ F̃ = Φ̃ +

p̃
τ

p̃ = ñ + T̃ ñ = Φ̃ − 〈Φ̃〉

ωd = cos θ
1
r̄
∂

∂θ
+ sin θ

∂

∂r̄
Up = Ṽ‖ + ρ∗
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w̃ = ñ − ρ2
∗∇̄2
⊥F̃ F̃ = Φ̃ +

p̃
τ
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2.2. Initial Profiles and Heat Source Term 
 

 To investigate the magnetic shear effect on ITG turbulence, reversed magnetic shear profiles 
given by Ref. [19] with a common q-minimum value q_min=1.35 at r/a=0.6 are introduced 
combining different magnetic shear in the core region. FIG. 1 and 2 indicate the reversed 
shear q profile and the corresponding magnetic shear, respectively. These In the outside 
region of q-minimum position, , they are identical. Because of the stabilizing effect 
of negative magnetic shear on ITG modes, especially the linear threshold is significantly 
different among four cases. 
 No density flux is generated due to the adiabatic electron response so that the equilibrium 
density profile  is fixed, where  and . 
 Heat source is given by the quadratic form, . It is added 
in to the R.H.S of the ion temperature evolution equation. Note that this type of source profile 
provides the heat sink in edge region. In our model, the ion temperature cannot be divided 
into equilibrium and fluctuating quantities, but is rather solved as a whole. 
 The value of  is given as 0.01 in this study. 
 
2.3. Numerical Settings 
 
Off-resonant modes are taken into account: 1.2 <m/n< 
q_min=1.35 are included as shown in FIG. 3, where m is 
poloidal mode number, and n is toroidal mode number. 
 
 
3. Simulation Results 
 
3.1. Off-resonant Mode 
 
In this section, we discuss on the off-resonant mode 
excitation in the saturation phase. Multiplying complex 
conjugate of F, to the eq. (1), we obtain the electrostatic energy conservation equation as 

 
The 1st term of the R.H.S indicates the energy transfer to a mode (m,n) due to the nonlinear 
coupling (Reynolds stress) and the 4th and 5th term are corresponding to the energy transfer 

5.1.3 Growth of ( 4, 3) mode

Energy transfer via beat interaction

The cause of ITB collapse is attributed to transport by the (4,3) mode. Therefore, the lifetime of

the ITB is correlated with the growth of the (4,3) mode. To clarify the energy transfer channel

which plays major role for excitation of the (4,3) mode, let us derive the energy conservation

law for each mode. Using the Fourier transform of eq. 3.1, multiplying F∗m,n on both sides and

integrating over the minor radius we obtain
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Similarly, from Equations 3.2 and 3.3 we obtain
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The convective non-linearity gives the energy transfer to a mode k0 via a three wave coupling

of k1 and k2 which satisfies the relation k0 = k1+k2 andω0 = ω1+ω2. �NL
k0 Φ

(k1,k2, r) represents

the first term of the R.H.S of eq. 5.2,

�NL
k0 Φ
= �F∗k0

[Φk1 , ρ
2

∗(∇2

⊥F)k2]�. (5.5)

42

FIG.3. Calculated modes in the 
case with q0=3.0 in m-n space. 

FIG.1. Radial profiles of safety factor q. FIG.2. Radial profiles of magnetic shear. 
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via toroidal mode coupling. Estimating these term, we investigated the excitation mechanism 
of an off-resonant mode. We chose the modes with the same toroidal mode number as n=34 
but different poloidal mode number, which compose one of the strongest ITG 
mode(ballooning mode) around q-minimum region in the saturation phase. Here,  are 
resonant modes, and m<46 are off-resonant. FIG. 4 shows the temporal evolution of energy 
transfer via toroidal mode coupling and fluctuating electrostatic energy for the (44,34)-(47,34) 
modes. We also check the amplitude of energy transfer channel for nonlinear coupling and 
three-wave coupling with (1,0), i.e.   

€ 

(m ±1,n)  (1,0)⇒ (m,n) . It is found that their 
contributions are much smaller than the toroidal mode coupling itself (less than 0.1%).  
 

 
FIG. 4. Temporal evolution of energy transfer via toroidal mode coupling to (47,34)-(45,34) mode  

and fluctuating electrostatic energy integrated over r, in the case with q0=3.0 and q0=1.5.	
 
 
 As shown in FIG. 4, the energy transfer via toroidal mode coupling becomes large after the 
saturation. However, in the case with q0=1.5, it is less effective at the beginning of the 
saturation phase (79<t<85). Namely, they are “slab-like” mode structure in this stage. After 
that, toroidal coupling is getting strong gradually. Finally, in the fully nonlinear phase (85<t), 
mode gap around q-minimum region does not suppress the ballooning mode any more. 
 

 
 
FIG. 5 shows a snap shot of eigenfunction of phi of n=34 and m=44~47 component at 
t=102.0. The time is corresponding to the instance when the turbulence is relatively quiescent. 
The eigenfunction clearly indicates ballooning mode structure. FIG. 6 gives each 
eigenfunction at the same time. (44,34) and (45,34) in red and pink lines imply that they are 

[LEFT] FIG. 5. Eigenfunction of n=34 series 
(m=44~47) at t=102 including off-resonant modes 
(45,34) and (44,34) in the case [D]. 
[TOP] FIG.6. Radial profile of fluctuating 
electrostatic potential in the case [D] at t=102.0. 
Lines in Pink and Red indicate off-resonant modes. 
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strongly coupled with resonant modes via toroidal mode coupling. Off-resonant mode around 
q-minimum region is slab-like in linear phase, however, in the fully nonlinear phase, they 
compose the toroidal ITG mode. 
 
 
3.2 Zonal flow generation 
 
The Contour plot shown in FIG. 7 presents temporal evolution of radial profile of zonal 
component of VExB with short radial wavelength (

€ 

10ρ *). The measure of color chart is 
common for the all cases. 
 In each case, frequent outward propagation of zonal flow in the short timescale is clearly 
shown. In addition, in the case [C] (q0=2.0) and [D] (q0=1.5) indicate, intermittent oscillation 
of ExB flow around r~0.6 in longer-timescale. Hereafter, we call the former one as small 
avalanche. In this section, we will focus on the case [D] with q0=1.5. It should be noted again 
that q profile is identical in the region r>0.6 for all cases.  

 
FIG. 7. Temporal evolution of radial profile of VExB with short kr component. 

 
The period of small avalanche is roughly	
 Δt~0.5(Bohm time) and it occurs around r/a~0.65, 
on the other hand, the period of large-scale burst is roughlyΔt~5(Bohm time) and the center 
is located at the q-minimum position.  

  

FIG. 8. [Left] Contour plots of cross-correlation coefficient:  for 
fluctuating component of 

€ 

Er
0,0 with short kr (zonal flow) and [Right] extended view around r=0.6 area. 

 
! 

"x,x=0.6(#) $ Rx,0.6(#) R0.6,0.6(0)Rxx (0)( )1/ 2



6                       THC/P8-05 
 
FIG. 8 shows contour plot of spatial correlation coefficient among  and . 
Outward propagation of zonal electric field from r~0.45 to r~0.7 is shown. It is seen that the 
propagation speed does not strongly depend on magnetic shear. However, the correlation 
length is getting longer as the shear becomes weaker. The figure also indicates that, the auto-
correlation time is small. The zonal flow propagation occurs intermittently. Though this small 
avalanche is clear in the contour of correlation of Er, it is hardly seen in the temperature 
channel, especially in the inner region from r=0.6.  
 
 
3.3 Long-time scale variation 
 
FIG. 9 shows temporal evolution of  
profile. It is found that, the intermittent 
enhancement of ExB occurs synchronizing 
with the large-scale temperature profile 
relaxation. The equilibrium part of radial 
electric field is also varying in this 
timescale. Namely, the large burst is related 
with the equilibrium state and it is separated 
from the turbulent time scale. FIG. 10 shows 
the contour plots of spatial cross-correlation 
coefficient of temperature gradient at the 
position r=0.6. It is confirmed that the burst 
with long timescale in the case [D] with 
q0=1.5 has quite large correlation length. 
The important things are, this kind of oscillation appears depending on the magnetic shear, 
and the variation starts from q-minimum region as clearly shown in FIG. 10. The analysis of 
the triggering mechanism is still in progress. It will be presented in the conference. 
 
 
4. Summary 
 
We have investigated magnetic shear effect on ITG turbulence in fully nonlinear regime by 
the use of global gyro-fluid code. Off-resonant modes around q-minimum region are 
investigated.  
 
1.  It is found that toroidal mode coupling plays a dominant role in the nonlinear regime 

even around the q-minimum region. Until the nonlinear saturation, the toroidal mode 
coupling effect on off-resonant modes is relatively weak for the flat shear case. However, 
it becomes gradually large in the nonlinear saturation phase, and finally the envelope of 
toroidal ITG mode including off-resonant modes is developed across the q_minimum 
region. 

 
2. Two different timescale of zonal flow variation is observed. The small avalanche of zonal 

flow is related to the zonal field propagation across the q-minimum. The large burst is 
related to the temperature profile relaxation. The burst starts from q-minimum region, and 
has a long correlation. Quasi-periodic enhancement of mean ExB flow in vicinity of q-
minimum followed by the burst is observed.  

 
 

FIG.10. Contour plots of cross-correlation coefficient:

about . 

! 
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