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Abstract. We report on developments in the theory and computation of gyrokineticléunteiin the
tokamak edge. A new formulation of the gyrokinetic Lagrangian for the gtExB-flow regime is been
found, with clear correspondence to previous forms and to reduceld.Nlidnservation of energy, mo-
mentum, entropy, and particles is demonstrated at both theoretical and ctonaitavel. Neoclassical
phenomena and MHD equilibration are shown in our electromagnetic totakEp@ace computational
model FEFI. Delta-f gyrokinetic edge turbulence is computed on the full dlukace with the local
fluxtube model delta-FEFI and results on the edge/core transition ane. giVe also present ongoing
gyrofluid studies of ELM crash scenarios, including the influence of thwtdbrap current in an edge
pedestal model on both the initial instability and the resulting turbulence. Bbedies and findings are
centrally relevant to further understanding of the H-mode and prepsufite pedestal in large tokamaks.

1. Electromagnetic Gyrokinetic Theory

In the context of gyrokinetic field theory [1-3], a new forratibn of the gyrokinetic Lagrangian
for the situation of low beta and strong ExB flow was given in.R&f Generally there are two
ways to obtain a gyrokinetic Lagrangian via Lie transforthg: field variable amplitude is small
but the scale of motion is arbitrary, or the scale of motiolaige compared to the gyroradii of
all species and the field variable amplitude is arbitraryesehare the approaches of Refs. [5,6]
or [7], respectively. Our method follows the mathematicRRef. [7] but with two changes:
first the large scale flow is determined by the Euler-Lagraemeations at zeroth order to be
the ExB flow, as in Ref. [8], and not an arbitrary background figpwen by a fluid analysis.
Secondly, the strategy of Ref. [6] explicitly using the trfamsy gauge freedom to arrange all
effects of the dependent variables into the Hamiltonianer&fore, the single variable covers
both equilibrium and fluctuating flows, and no field-variatiee derivatives explicitly appear
in the equations. This is the maximal benefit for computatidie also obtain the added benefit
of direct proof of correspondence to the Ref. [6] form in hisgevave and our small-amplitude
limit, and also very naturally to nonlinear reduced MHD. $aalemonstrations are given in
Ref. [4].

In limit vg < cs (subsonic ExB flow) the electrostatic Lagrangian of Ref. pjuces to the
low-k; (small perpendicular wavenumber, hence long-wave) lihiRef. [6]. Electromag-
netic extension using the canonical parallel momentum gy@¢enter) particle coordinate is
straightforward. The particle coordinates @ie= {R, p,, 4,9 }, the gyrocenter position, canon-
ical parallel momentum, generalised magnetic moment, gnappase angle, with ignorable
andp an adiabatic invariant to second order (the order kept)@re’pansion parameter/e. All
appearance of the dependent field varialjtgg\, } is stricly arranged into the time component.
In the subsonic, low-beta electromagnetic linit & Lope/B? < 1), the particle Lagrangian
and Hamiltonian are
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respectively, where
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are functions of the coordinates. The drift component ofEbker-Lagrange equations is
dR F dp;
r—— —=[OH-—+UB* 2 — _B*.OH
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separating naturally from the gyromotion givendyy/dt = 0 anddd /dt = (e/m)dH /ou. The
other quantities

A*:A-i-%zb B* = OxA* i=b.B" F=0A-(0A)=¢B (4

are functions of the geometry. The superscrigtenoting the transpose, aads the rank-three
Levi-Civita pseudotensor. It follows thatxb = —0O- (F/B) andB* = B — p,[1- (F/eB).

The system Lagrangian is constructed by embedding pariitie phase space and then using
a continuous distribution function in that space with thiattenships between particle coordi-
nates and phase space independent variables understaphds$e space volume element is

dA =dV @ dw dv=,/gdx dxédx® dW =2mm ?dp,dug  (5)

where, /g is the determinant of covariant components of the coordinagtric. The system
Lagrangian is

B? 2
ng/d/\pr—/dVﬁ BI =|0.A] (6)

where the sum is over species and the field term is the cotiovbdue to magnetic field energy.

There is no electric field energy term because the assumpitigmasineutrality has been taken.
The equations of motion consist of the gyrokinetic equatanf and field equations for the

potentialspandA.. The gyrokinetic equation may be case in the antisymmetecket form

% + E2H 5 f ALy =0 (7)
whereZ is the rank-four Levi-Civita pseudotensor in the 4-spacesoed bydV @ dp,. The

components of£2P¢d gre ],/\/QBT| times +£1 or 0 depending on the permutation of indices
{abcd} in the 4-space domain. The 3-space ordef1ig3} for dx!dx*dx® and hence the 4-
space order i§1237} for dxtdx*dx®dp,. Positive, negative, and zero permutations of these
give the other components. The gyrokinetic Poisson and Aengguations for this system are
found by setting the functional derivative bfwith respect tap or A; respectively to zero,

Z/dW[eJof 4 {3oMIo— (M)} =0 2 A = —qu/dWe@(fU) ®)

whereM = —(&?/B)af /ou defines the polarisability (for a Maxwellias/ = FM/T).

The particle canonical toroidal momentum is given by theittal covariant component of
A*, via Py = eA. For a tokamak magnetic geometry wih= 10¢ + Upx U we haveAg =
W+ (I /eB)p; The corresponding phase space continuity equation is

9 1 0 cem 5. OH
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Similarly, the corresponding form for energy is

af 1 : oH

= H)+\/§B azp (VOB THZp) = T2 (10)

These forms are valid for any dependencélaipon the field variables, so long as these do not
appear in the symplectic part bf(the part dependent upon the time derivatives of the particl
coordinates). It is vital to have Lie-transform@a@ndA into H following the strategy of Ref.
[4]. In a recent preprint [9], we have proved, using the \aiiti continuity equation, that for
anyH the momentum conservation equation is

§t< DA¢> <fpzb¢> <fpzb¢V>+< aa¢> 0 (11)

where O - P = ¥, [dW fe defines the polarisation vector. The generalised vortigty
—(1/nee)0 - P, which reduces to the usuBglﬂi(pform in the limit of delta-f reduced MHD.
ForH dependent upofip, A, Og, UA } the last term Eq. (11) becomes

oH 0 a(p oH 0 aAH oH 1
<fa¢> <a¢ V'famcp>+ <a¢ <faDA”+u0DLA”>> (12)
The term involvingP is identified as the ExB component of the toroidal momentunillbg-
trating the results in the MHD limit (cf. Ref. [4] for details)The terms in Eq. (12) give the
field-field Reynolds and Maxwell stresses, respectively.oflhese forms are obtained under
any ordering in the Lie-transform. They are underlain bycéemergetic consistency, in which
approximation is restricted to the establishmeniiok p, L and after that all reductions are rig-

orous. In much of the current discussion the field theorktinderpinnings, let alone energetic
consistency, are usually not discussed even if barely owesd at all.

2. Electromagnetic Gyrokinetic Computation

Computational models for the total-f form given by the aboegilangian (Eq. 6) and its delta-f
limit are called FEFI [10] and delta-FEFI [11], respectixelStricty energetic consistency is
obtained in the delta-f limit (not the delta-f computatibnaethod for a total-f equation, by
contrast) only if the geometry and equations are put intddbal fluxtube limit. FEFI is still
under development and axisymmetric flow/current cases haea managed. Delta-FEFI is
mature and has obtained several results for core and edgddnce cases; however, it cannot
become a global model. Eventually, fluxtube models are ugafstudies of intrinsic physics
but the edge eventually requires a total-f model. The stittisese is given below.

2.1. Total-F Axisymmetric Cases

In general either global or local versions are best done mdhordinates to avoid problems
with large components of the nonlinear parallel gradientharadial direction on the compu-
tational grid. True field aligning is only relevant to turbate; for axisymmetric cases, any
system of flux coordinates is automatically field aligneck (timdisturbed parallel gradient in-
volves the poloidal coordinate only). The arrangement efdiirokinetic equation as in Eq.

(7) allows simple replacement of any flux coordinate systgrarty other in the computations.
Unfortunately, the MHD equilibrium is a result; only its apgimation is an input. Dynamical

flux surface following by the grid is still under developmenintil then we must face radial

components iJ; (given by the pieces witd poloidal andb radial in the indices in Eq. 7).
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At the moment FEFI is using the low: version of the above Lagrangian, with

U o Bl % = 0ol (13)
thereby concentrating upon equilibrium phenomena. The¢bon aim is benckmark against
theory and other codes for neoclassical bootstrap flows amémds. In Ref. [10] the control
case was given: in the absence of collisions there are nolsumistrap phenomena, and the
radial electric field relaxes to a close approximation ofistadial force balance for the ions:
nepx + px ~ 0 for a single-species case with singly charged ions, wkelenotes the radial
component, and andp are the computed density and pressure moments @fspectively.

Herein, we add collisions, so that Eq. (7) becomes

of .
¥ EadeH’aﬁbAC?d =C(f) (14)

where the collision operat@is a combination of like-like pitch-angle and energy saattgfor
each species plus electron-ion pitch-angle scatteringaafh ion species. The like-like operator
is formulated to conserve energy and momentum. True eneggiesing is replaced by parallel-
velocity diffusion due to problems at zero velocity in theplementation. The like-like operator
is given by ,

C = %Vzp%% - %Vze {(Z— Oz) — Bz%] (15)

wherev and{ are given byw? = U? +2uB andl = (U —y,) /v with U given in Eq. (2), and
0z, [z, Y, are parameters decided at each step to conserve energy amghinm by each part of
C.. In addition, the electron-ion pitch-angle scatteringrapa for each ion species is given by

<0 _1—Z2 0
Ce= Z&VEIT& (16)

with ¢ = U /v simply. Then, for each ion speci€s= C, and for electron€ = C,+ Ce. The
coefficients are B7997 times the Braginskii collision frequency for each gggc
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FIG. 1: Momentum conservation and zonﬁllplofiles for FEFI, with ¢ = vea/cs) and without
collisions, the control test for bootstrap current. Theuab = 1.88is evaluated at nominal
parameters (see text).

At this stage we demonstrate the presence/absence tedlisibos on the bootstrap current.
In Ref. [10] the collisionless control case gave the expekfadch-Schiiter current coB side-
bands but negligible zonal current or zonal parallel flowe Tetails of the case are cited there;
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nominal parameters refer to the mid-pedestal valugs-6f200eV anch = 2 x 101°m~3, along
with Ry = 3.3a=1/65m andB = 2.5T. In the collisional case, a substantial bootstrap ctirren
in roughly the expected amplitude is found, corresponding dIrift velocity J /nee about 15
times the sound speed at the mid-pedestal radius. Theion#libave no overall effect on mo-
mentum conservation. Further study will focus upon congaarito both neoclassical theory
and experimental observations of toroidal flows.

2.2. Delta-F Fluxtube Turbulence Cases

The delta-f fluxtube model derived from the above, calledadEEFI (dFEFI), is part of the
derivation chain which ends in delta-f gyrofluid equatiohs][ which are the same as the GEM
model of Ref. [12]. The polarisation and parallel dynamias lavearised except for the pres-
ence of theA fluctuation inH to first order. This magnetic flutter nonlinearity then congs

with the ExB one due to ttha fluctuation. The linearisation of parallel dynamics forcsg of
a delta-f free energy rather than the total-f energy — asutrébe use of fluxtube geometric
assumptions as well is mandatory, as explained in Ref. [1i¢.Model may be used for intrin-
sic turbulence studies as in conventional fluxtube modgllbut nonlocal phenomena are not
treated. Nevertheless, well defined studies of turbulehegacter and enegetics are possible,
and until the total-f efforts mature this is the best we have.

The model is defined by the delta-f gyrokinetic equation

ag | FY BS MV + B

ot + @[HL h+ fo]xy+ E[HO7 h]zs: 2%

and the self consistent polarisation and induction eqnatio

K (h) +C(df) 17)

Z/dW [eb(éf)+e2F5(J§—1)?p] =0 0% A -l-u()z/dW [evJo(3f)] =0 (18)

for the dependent variabléd, (~p andA, where

V2 - -
Ho = m% +HB  Hi=eb(9) —eyd(A) h=35f+Feb(®) g=h-FH (19

V’Z
Fo=FY(n,T) Fa:FT—M fozFM[§+(5—§>él<—x> (20)

and the collision operatd? is given by pitch angle scattering off a background @agpiece
from FEFI).

Each species is defined by mamsschargee, and background density and temperature.
The Oth and 1st order pieces lh are Hyp and Hy wherevH and p are coordinates idW =
2T[m—1de duB The backgroundr is the species Maxwelliaf™, andL, andLt are the
species density and temperature gradient scale lengths.

Fluxtube geometry with perpendicular and parallel coatés{xy} @ sis defined by the drift
tensor componerE®Y, magnetic field strengtB, poloidal/parallel componer®®, curvature
operatork, and metric coefficientg®, g, g"¥ using Hamada coordinates for whigtY/B2,
BS, and,/g are flux functions, with all details and derivations in Refs3,[l4]. Subscripted
brackets such &g, b|yy denote a Poisson bracket between the two quanttiésn the given
coordinate plangxy} The grid is in the coordinate space pfys} ® {zw} with the latter two
coveringv andpin units ofV = /T /mandT /Bo.
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The way in which edge turbulence cases are set up followsquegyrofluid usage. Param-
eters are taken from a given point on the profile (in normelig@ume minor radiusy). The
radial domain sizé&y is limited by the local value df | (the scale length of the steepest gradient
— see Ref. [15] for the explanations of this and other locahpeaters). The drift angle is lim-
ited by the extent of perpendicular variation on the entug urface; in a circular model with
minor radiusa this isLy = 2rr /qwith r =raa. For edge casds;/Ly > 10 leading to a strongly
anisotropic longwave component. For typical L-mode cast#sTy ~ 100eV andB =2.5T (cf.
Ref. [16]) Lx ~ 60ps while Ly ~ 150(s in units of the ion sound gyroradius (drift scafe) The
scale range Q < kyps < 1 is the drift wave component, whilgps < 0.1 is mesoscale MHD
which is excited by both inverse ExB energy transfer andnasoe with geodesic acoustic
oscillations. The strength of the MHD component ultimaiddynands full flux surface compu-
tations even for a fluxtube model, which are presented hedgithe moment, only a scan in
Be is available; at the conference scans in collisionalifly, /cs and shea6=dlogq/dlogr as
well as background ExB she@¢ = Bgldcho/dzr will be given. A zonal flow energetics study
is also planned, pending operational serviceability of potational platforms.

2.3. Full Flux Surface Beta Scan

The basic result of any edge turbulence model is scalingexbae turbulent fluxes in the deeply
saturated regime, defined by the temporal stationarity tatéstical sense of all energy transfer
channels. The parallel ion velocity fluctuations are uguidlé last element to saturate, so the
stationarity of the parallel flow energy is used as a proxyidally the mean of a sample should
be at least two orders of magnitude smaller than the stardiandtion — see Ref. [17] for
details of this and of mode structure diagnostics. The paiscalings are those with respect
to beta and collisionality, which followT /B? andn/T?; that is,n andT in the edge operational
diagram (cf. Ref. [18]). In an experiment these vary at caniddanotps/L |, So it is important
to note the effect of the gyro-Bohm flux velocity normalisatio terms ofcsp2/ Li. This scales
as(Be/C)Y/2 in scans varyingr andT holding all other parameters fixed.

The scan of full flux surface turbulence versus beta is ptegdrerein. The base case is given
byne=2x10°m=3andTe=T, = 100eV andB = 2.5T andR= 3.3a = 1.65m andq = 3.5
andS= 2 atr, = 0.965. NoIninaI profiles are such that =L,,/2=L, =0.035m, giving nor-
malised local parameters Bt= 1.75 andii= 7.41 andC = 3.11 andwg = 0.0424 giving induc-
tivity Be(qR/L)?, thermal nonadiabaticityme/Mp)(qR/L ; )?, collisionality 051(vel | /cs)fl
and toroidal curvature forcing2 /R, respectively.

particle electron heat ion heat
10" \ 10" \ 10" \

P, Q. Q | Ve

FIG. 2: Beta scaling of the transport ExB fluxes for delta-FHifull flux surface cases. The
point entering the central frame bottom is the magneticdhutthich is small for beta below the
MHD regime. The trend is similar to fluid and gyrofluid caseswain and electron temperature
gradients.
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The computational grid is 64 1024x 32 in {xys} and 32x 16 in {zw} on a domain of
62.8ps x 149Ps x 2rgRand—5 < z/V < 5 and 0< wBy/T < 10 respectively. Fluxtube bound-
ary conditions are as described in Ref. [14]; it is importamadte that periodic conditions i
are very damaging due to the admittance of an unphysicalrioiv jet with ky = 0. Dirichlet
boundaries are used ifzw} except atv = 0 where Neumann boundaries are used. The time
step is 001L, /cs. The numerical scheme is set up as in previous fluid and gydafhodels
[19,12]. The brackets use the 4th order Arakawa method [R@]X terms 4th order central
differencing, the collisions use the 2nd order finite volumethod, and the time step is the 3rd
order step from Karniadakis [21]. Additional spatial hyyiecosity applied tqdf) is applied
as in Ref. [12]; the delta-f gyrofluid moment variables arearstbod as a representation for
(6f) following the derivation path in Ref. [11].

The basic transport scaling (ExB fluxes for particles andted@ and ion energy with the
magnetic flutter flux for electron energy) is given in Fig. ZheTresult is unremarkable, serv-
ing only to confirm previous experience with fluid and gyraflmnodels with ion and electron
temperature gradients [22,23]. Cases Math 2 have so far led to very strong dynamics which
eventually crash the runs; saturated states in this MHDhHdati®ed regime are not yet available.
With a complete gyrokinetic model covering the entire fluxface the result remains incom-
patible with the observed tokamak L-H transition. The H-m¢24,25] remains unexplained
despite many claims over the past 20 years. The relevarditiaandata are given in the L-H
transition region of the edge operational diagram [18],cktthe runs foil up to 150eV have
been able to cover.

amplitudes fluxes

amplitude envelopes flux envelopes
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FIG. 3: Mode structure for delta-FEFI in full flux surface s State variable amplitude spec-
tra peak in the MHD range (jps < 0.1) while current and vorticity are much flatter. The fluxes
also peak for k much lower the linear growth peak ajgds ~ 0.15. The geodesic resonance
is at 0.06 (see text). The ballooning structure of amplitudes and fugesimilar to gyrofluid
experience [26,16].

The most interesting result in these cases so far is thegstrethe mesoscale MHD regime
shown by the saturated spectra. Drift-angle spectra aralglaenvelopes in the nominal case
are shown in Fig. 3. Short linear runs with initial amplitustet to 10°1° rather than D find
the strongest growth close kgps = 0.15, already rather long-wave in the drift wave sense; this
results from the large valuR/Lt = 47 which causeg Wwell larger than unity hence nonadiabatic
thermal electrons. The nonlinear energy transfer [10] shetvong drive of the MHD range due
to ExB vorticity advection. The above-unity values of b@@land i lead to weak damping
of the MHD shear-Alfien component, allowing eddies in this range to persist loraugh to
enhance the gradient drive. Since the drift wave spectruheld together by simultaneous
coexistence of cascade/transfer to larger scale by wyrticlvection and to smaller scale by
ExB density/pressure advection [27-29], the energy balahany wavelength has a nonlinear
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input as well as an output. Since the rate of nonlinear teansflarger than linear growth rates
everywhere in the spectrum, the overall result does notraepe linear physics. Indeed, in Ref.
[10] the transport scaling was to diverge completely from lihear growth rate result. From
the point of view of experimental observations, large sfialguation ¢~ 1cm) and Bohm-like
global scaling have been reported, and fluid computatiowne had difficulty reproducing this.
The kinetic cases differ mainly due to the large trappediivadn the electrons. The ExB heat
flux peak is isotropic in energy (ifzw}) at a velocity roughly ¥e and a peak is visible at =0
andpuBy/Te = 2.5; while the thermal,. is roughly 13 the kinetic one adMgis 16 times less or
about 08, which is low enough to matter. The dFEFI result producesenmngwave activity
than the GEM result for the same case (cf. Ref. [10]). The trappffect on electrons may
explain the large scale fluctuation observations.

Results on other topics such as sensitivity to ExB shear andlZtow energetics [26,30]
cannot be shown for space reasons. These will be reported BKEA FEC 2010 and published
elsewhere.

3. Edge Turbulence Gyrofluid Studies

The following studies were done with global gyrofluid cormatigns using the GEMR model:
an ELM crash scenario involving ideal MHD ballooning destaétion in Ref. [31], which
gives a complete description of the model, a quantitativagarison with scrape-off layer tur-
bulence in Ref. [32], integration with a full-wave Maxwelllger for simulated reflectometry
suitable for quantitative experimental comparisons in [R&S]. In addition, a conformal co-
ordinate system was derived to minimise coordinate defboman shaped geometry while
retaining all advantages of field alignment was given in R&f].[
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