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Abstract. We report on developments in the theory and computation of gyrokinetic turbulence in the
tokamak edge. A new formulation of the gyrokinetic Lagrangian for the strong ExB-flow regime is been
found, with clear correspondence to previous forms and to reduced MHD. Conservation of energy, mo-
mentum, entropy, and particles is demonstrated at both theoretical and computational level. Neoclassical
phenomena and MHD equilibration are shown in our electromagnetic total-f phase-space computational
model FEFI. Delta-f gyrokinetic edge turbulence is computed on the full fluxsurface with the local
fluxtube model delta-FEFI and results on the edge/core transition are given. We also present ongoing
gyrofluid studies of ELM crash scenarios, including the influence of the bootstrap current in an edge
pedestal model on both the initial instability and the resulting turbulence. Thesestudies and findings are
centrally relevant to further understanding of the H-mode and pressureprofile pedestal in large tokamaks.

1. Electromagnetic Gyrokinetic Theory

In the context of gyrokinetic field theory [1–3], a new formulation of the gyrokinetic Lagrangian
for the situation of low beta and strong ExB flow was given in Ref. [4]. Generally there are two
ways to obtain a gyrokinetic Lagrangian via Lie transforms:the field variable amplitude is small
but the scale of motion is arbitrary, or the scale of motion islarge compared to the gyroradii of
all species and the field variable amplitude is arbitrary. These are the approaches of Refs. [5,6]
or [7], respectively. Our method follows the mathematics ofRef. [7] but with two changes:
first the large scale flow is determined by the Euler-Lagrangeequations at zeroth order to be
the ExB flow, as in Ref. [8], and not an arbitrary background flowgiven by a fluid analysis.
Secondly, the strategy of Ref. [6] explicitly using the transform gauge freedom to arrange all
effects of the dependent variables into the Hamiltonian. Therefore, the single variable covers
both equilibrium and fluctuating flows, and no field-variabletime derivatives explicitly appear
in the equations. This is the maximal benefit for computations. We also obtain the added benefit
of direct proof of correspondence to the Ref. [6] form in his long-wave and our small-amplitude
limit, and also very naturally to nonlinear reduced MHD. These demonstrations are given in
Ref. [4].

In limit vE ≪ cs (subsonic ExB flow) the electrostatic Lagrangian of Ref. [4] reduces to the
low-k⊥ (small perpendicular wavenumber, hence long-wave) limit of Ref. [6]. Electromag-
netic extension using the canonical parallel momentum as a (gyrocenter) particle coordinate is
straightforward. The particle coordinates areZp = {R, pz,µ,ϑ}, the gyrocenter position, canon-
ical parallel momentum, generalised magnetic moment, and gyrophase angle, withϑ ignorable
andµan adiabatic invariant to second order (the order kept) in the expansion parameterm/e. All
appearance of the dependent field variables{φ,A‖} is stricly arranged into the time component.
In the subsonic, low-beta electromagnetic limit (βe = µ0pe/B2 ≪ 1), the particle Lagrangian
and Hamiltonian are

Lp = (eA+ pzb) · Ṙ+
m
e

µϑ̇−H H = m
U2

2
+µB+eφG (1)
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respectively, where

U ≡ ∂H
∂pz

=
pz

m
− e

m
J0A‖ φG = J0φ− e

2B
∂
∂µ

[
J0(φ2)− (J0φ)2

]
(2)

are functions of the coordinates. The drift component of theEuler-Lagrange equations is

B∗
‖
dR
dt

= ∇H · F
eB

+UB∗ B∗
‖
dpz

dt
=−B∗ ·∇H (3)

separating naturally from the gyromotion given bydµ/dt = 0 anddϑ/dt = (e/m)∂H/∂µ. The
other quantities

A∗ = A+
pz

e
b B∗ = ∇×A∗ B∗

‖ = b ·B∗ F = ∇A− (∇A)T = ε ·B (4)

are functions of the geometry. The superscriptT denoting the transpose, andε is the rank-three
Levi-Civita pseudotensor. It follows that∇×b =−∇ · (F/B) andB∗ = B− pz∇ · (F/eB).

The system Lagrangian is constructed by embedding particles in a phase space and then using
a continuous distribution function in that space with the relationships between particle coordi-
nates and phase space independent variables understood. The phase space volume element is

dΛ = dV⊗dW dV=
√

gdx1dx2dx3 dW= 2πm−2dpzdµB∗‖ (5)

where
√

g is the determinant of covariant components of the coordinate metric. The system
Lagrangian is

L = ∑
z

∫
dΛ f Lp−

∫
dV

B2
⊥

2µ0
B2
⊥ =

∣∣∇⊥A‖
∣∣2 (6)

where the sum is over species and the field term is the contribution due to magnetic field energy.
There is no electric field energy term because the assumptionof quasineutrality has been taken.

The equations of motion consist of the gyrokinetic equationfor f and field equations for the
potentialsφ andA‖. The gyrokinetic equation may be case in the antisymmetric bracket form

∂ f
∂t

+EabcdH,a f,bA∗
c,d = 0 (7)

whereE is the rank-four Levi-Civita pseudotensor in the 4-space covered bydV⊗dpz. The
components ofEabcd are 1/

√
gB∗

‖ times±1 or 0 depending on the permutation of indices

{abcd} in the 4-space domain. The 3-space order is{123} for dx1dx2dx3 and hence the 4-
space order is{123z} for dx1dx2dx3dpz. Positive, negative, and zero permutations of these
give the other components. The gyrokinetic Poisson and Ampere equations for this system are
found by setting the functional derivative ofL with respect toφ or A‖ respectively to zero,

∑
z

∫
dW[eJ0 f +{J0M J0− (J0M )}φ] = 0 ∇2

⊥A‖ =−µ0∑
z

∫
dWeJ0( fU) (8)

whereM ≡−(e2/B)∂ f/∂µ defines the polarisability (for a Maxwellian,M = e2FM/T).
The particle canonical toroidal momentum is given by the toroidal covariant component of

A∗, via Pϕ = eA∗ϕ. For a tokamak magnetic geometry withB = I∇ϕ+∇ψ×∇ϕ we haveA∗
ϕ =

ψ+(I/eB)pz The corresponding phase space continuity equation is

∂
∂t
( f Pϕ)+

1√
gB∗

‖

∂
∂Zp

· (√gB∗
‖ f Pϕ Żp) =− f

∂H
∂ϕ

(9)
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Similarly, the corresponding form for energy is

∂
∂t
( f H)+

1√
gB∗

‖

∂
∂Zp

· (√gB∗
‖ f H Żp) = f

∂H
∂t

(10)

These forms are valid for any dependence ofH upon the field variables, so long as these do not
appear in the symplectic part ofL (the part dependent upon the time derivatives of the particle
coordinates). It is vital to have Lie-transformedφ andA‖ into H following the strategy of Ref.
[4]. In a recent preprint [9], we have proved, using the vorticity continuity equation, that for
anyH the momentum conservation equation is

∂
∂t

〈
−P·∇Aϕ

〉
+

∂
∂t

〈
f pzbϕ

〉
+

∂
∂V

〈
f pzbϕV̇

〉
+

〈
f

∂H
∂ϕ

〉
= 0 (11)

where ∇ · P = ∑z
∫

dW f e defines the polarisation vector. The generalised vorticityis
−(1/nee)∇ ·P, which reduces to the usualB−1

0 ∇2
⊥φ form in the limit of delta-f reduced MHD.

ForH dependent upon{φ,A‖,∇φ,∇A‖} the last term Eq. (11) becomes

〈
f

∂H
∂ϕ

〉
=

∂
∂V

〈
∂φ
∂ϕ

∇V · f
∂H
∂∇φ

〉
+

∂
∂V

〈
∂A‖
∂ϕ

∇V ·
(

f
∂H

∂∇A‖
+

1
µ0

∇⊥A‖

)〉
(12)

The term involvingP is identified as the ExB component of the toroidal momentum byillus-
trating the results in the MHD limit (cf. Ref. [4] for details). The terms in Eq. (12) give the
field-field Reynolds and Maxwell stresses, respectively. Allof these forms are obtained under
any ordering in the Lie-transform. They are underlain by exact energetic consistency, in which
approximation is restricted to the establishment ofH,Lp,L and after that all reductions are rig-
orous. In much of the current discussion the field theoretical underpinnings, let alone energetic
consistency, are usually not discussed even if barely mentioned at all.

2. Electromagnetic Gyrokinetic Computation

Computational models for the total-f form given by the above Lagrangian (Eq. 6) and its delta-f
limit are called FEFI [10] and delta-FEFI [11], respectively. Stricty energetic consistency is
obtained in the delta-f limit (not the delta-f computational method for a total-f equation, by
contrast) only if the geometry and equations are put into thelocal fluxtube limit. FEFI is still
under development and axisymmetric flow/current cases havebeen managed. Delta-FEFI is
mature and has obtained several results for core and edge turbulence cases; however, it cannot
become a global model. Eventually, fluxtube models are useful for studies of intrinsic physics
but the edge eventually requires a total-f model. The statusof these is given below.

2.1. Total-F Axisymmetric Cases

In general either global or local versions are best done in flux coordinates to avoid problems
with large components of the nonlinear parallel gradient inthe radial direction on the compu-
tational grid. True field aligning is only relevant to turbulence; for axisymmetric cases, any
system of flux coordinates is automatically field aligned (the undisturbed parallel gradient in-
volves the poloidal coordinate only). The arrangement of the gyrokinetic equation as in Eq.
(7) allows simple replacement of any flux coordinate system by any other in the computations.
Unfortunately, the MHD equilibrium is a result; only its approximation is an input. Dynamical
flux surface following by the grid is still under development. Until then we must face radial
components in∇‖ (given by the pieces withd poloidal andb radial in the indices in Eq. 7).
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At the moment FEFI is using the low-k⊥ version of the above Lagrangian, with

U → pz

m
− e

m
A‖ φG → φ− m

2eB2 |∇⊥φ|2 (13)

thereby concentrating upon equilibrium phenomena. The short-term aim is benckmark against
theory and other codes for neoclassical bootstrap flows and currents. In Ref. [10] the control
case was given: in the absence of collisions there are no suchbootstrap phenomena, and the
radial electric field relaxes to a close approximation of static radial force balance for the ions:
neφ,x+ p,x ≈ 0 for a single-species case with singly charged ions, wherex denotes the radial
component, andn andp are the computed density and pressure moments off , respectively.

Herein, we add collisions, so that Eq. (7) becomes

∂ f
∂t

+EabcdH,a f,bA∗
c,d =C( f ) (14)

where the collision operatorC is a combination of like-like pitch-angle and energy scattering for
each species plus electron-ion pitch-angle scattering offeach ion species. The like-like operator
is formulated to conserve energy and momentum. True energy scattering is replaced by parallel-
velocity diffusion due to problems at zero velocity in the implementation. The like-like operator
is given by

Cz =
∂
∂ζ

νzp
1−ζ2

v3

∂
∂ζ

− ∂
∂U

νze

[
(z−αz)−βz

∂
∂U

]
(15)

wherev andζ are given byv2 = U2+ 2µB andζ = (U − γz)/v with U given in Eq. (2), and
αz,βz,γz are parameters decided at each step to conserve energy and momentum by each part of
Cz. In addition, the electron-ion pitch-angle scattering operator for each ion species is given by

Ce = ∑
i

∂
∂ζ

νei
1−ζ2

v3

∂
∂ζ

(16)

with ζ = U/v simply. Then, for each ion speciesC = Cz and for electronsC = Cz+Ce. The
coefficients are 1.87997 times the Braginskii collision frequency for each species.

FIG. 1: Momentum conservation and zonal J‖ profiles for FEFI, with (ν = νea/cs) and without
collisions, the control test for bootstrap current. The value ν = 1.88 is evaluated at nominal
parameters (see text).

At this stage we demonstrate the presence/absence test of collisions on the bootstrap current.
In Ref. [10] the collisionless control case gave the expectedPfirsch-Schl̈uter current cosθ side-
bands but negligible zonal current or zonal parallel flow. The details of the case are cited there;



5 IAEA-CN-180 / THC/P4-24

nominal parameters refer to the mid-pedestal values ofT = 200eV andn= 2×1019m−3, along
with R0 = 3.3a= 1/65m andB= 2.5T. In the collisional case, a substantial bootstrap current
in roughly the expected amplitude is found, corresponding to a drift velocityJ‖/nee about 1.5
times the sound speed at the mid-pedestal radius. The collisions have no overall effect on mo-
mentum conservation. Further study will focus upon comparison to both neoclassical theory
and experimental observations of toroidal flows.

2.2. Delta-F Fluxtube Turbulence Cases

The delta-f fluxtube model derived from the above, called delta-FEFI (dFEFI), is part of the
derivation chain which ends in delta-f gyrofluid equations [11], which are the same as the GEM
model of Ref. [12]. The polarisation and parallel dynamics are linearised except for the pres-
ence of thẽA‖ fluctuation inH to first order. This magnetic flutter nonlinearity then combines

with the ExB one due to thẽφ fluctuation. The linearisation of parallel dynamics forcesuse of
a delta-f free energy rather than the total-f energy — as a result, the use of fluxtube geometric
assumptions as well is mandatory, as explained in Ref. [11]. The model may be used for intrin-
sic turbulence studies as in conventional fluxtube modelling, but nonlocal phenomena are not
treated. Nevertheless, well defined studies of turbulence character and enegetics are possible,
and until the total-f efforts mature this is the best we have.

The model is defined by the delta-f gyrokinetic equation

∂g
∂t

+
Fxy

eB2 [H1,h+ f0]xy+
Bs

B
[H0,h]zs=

mv2
‖+µB

2e
K (h)+C(δ f ) (17)

and the self consistent polarisation and induction equations

∑
z

∫
dW
[
eJ0(δ f )+e2F ′

0(J
2
0 −1)φ̃

]
= 0 ∇2

⊥A‖+µ0∑
z

∫
dW
[
ev‖J0(δ f )

]
= 0 (18)

for the dependent variablesδ f , φ̃, andA‖, where

H0 = m
v2
‖
2
+µB H1 = eJo(φ̃)−ev‖J0(Ã‖) h= δ f +F ′

0eJ0(φ̃) g= h−F ′
0H1 (19)

F0 = FM(n,T) F ′
0 =

FM

T
f0 = FM

[
1
Ln

+

(
mv2

‖
T

− 3
2

)
1

LT

]
(−x) (20)

and the collision operatorC is given by pitch angle scattering off a background (theCei piece
from FEFI).

Each species is defined by massm, chargee, and background density and temperaturen,T.
The 0th and 1st order pieces inH are H0 and H1 wherev‖ and µ are coordinates indW =

2πm−1dv‖dµB. The backgroundF0 is the species MaxwellianFM, andLn and LT are the
species density and temperature gradient scale lengths.

Fluxtube geometry with perpendicular and parallel coordinates{xy}⊗s is defined by the drift
tensor componentFxy, magnetic field strengthB, poloidal/parallel componentBs, curvature
operatorK , and metric coefficientsgxx, gxy, gyy using Hamada coordinates for whichFxy/B2,
Bs, and

√
g are flux functions, with all details and derivations in Refs. [13,14]. Subscripted

brackets such as[a,b]xy denote a Poisson bracket between the two quantitiesa, b in the given
coordinate plane{xy} The grid is in the coordinate space of{xys}⊗{zw} with the latter two
coveringv‖ andµ in units ofV =

√
T/mandT/B0.
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The way in which edge turbulence cases are set up follows previous gyrofluid usage. Param-
eters are taken from a given point on the profile (in normalised volume minor radiusra). The
radial domain sizeLx is limited by the local value ofL⊥ (the scale length of the steepest gradient
— see Ref. [15] for the explanations of this and other local parameters). The drift angle is lim-
ited by the extent of perpendicular variation on the entire flux surface; in a circular model with
minor radiusa this isLy = 2πr/q with r = raa. For edge casesLy/Lx ≫ 10 leading to a strongly
anisotropic longwave component. For typical L-mode cases with Te∼ 100eV andB= 2.5T (cf.
Ref. [16])Lx ∼ 60ρs while Ly ∼ 1500ρs in units of the ion sound gyroradius (drift scale)ρs. The
scale range 0.1 < kyρs < 1 is the drift wave component, whilekyρs < 0.1 is mesoscale MHD
which is excited by both inverse ExB energy transfer and resonance with geodesic acoustic
oscillations. The strength of the MHD component ultimatelydemands full flux surface compu-
tations even for a fluxtube model, which are presented herein. At the moment, only a scan in
βe is available; at the conference scans in collisionalityνeL⊥/cs and shearS= d logq/d logr as
well as background ExB shearΩE = B−1

0 d2φ0/d2r will be given. A zonal flow energetics study
is also planned, pending operational serviceability of computational platforms.

2.3. Full Flux Surface Beta Scan

The basic result of any edge turbulence model is scaling of average turbulent fluxes in the deeply
saturated regime, defined by the temporal stationarity in a statistical sense of all energy transfer
channels. The parallel ion velocity fluctuations are usually the last element to saturate, so the
stationarity of the parallel flow energy is used as a proxy; typically the mean of a sample should
be at least two orders of magnitude smaller than the standarddeviation — see Ref. [17] for
details of this and of mode structure diagnostics. The principal scalings are those with respect
to beta and collisionality, which follownT/B2 andn/T2; that is,n andT in the edge operational
diagram (cf. Ref. [18]). In an experiment these vary at constant B, notρs/L⊥, so it is important
to note the effect of the gyro-Bohm flux velocity normalisation in terms ofcsρ2

s/L2
⊥. This scales

as(βe/C)1/2 in scans varyingn andT holding all other parameters fixed.
The scan of full flux surface turbulence versus beta is presented herein. The base case is given

by ne = 2×1019m−3 andTe = Ti = 100eV andB= 2.5T andR= 3.3a= 1.65m andq= 3.5
andS= 2 atra = 0.965. Nominal profiles are such thatLT = Ln/2= L⊥ = 0.035m, giving nor-
malised local parameters ofβ̂ = 1.75 andµ̂= 7.41 andC= 3.11 andωB = 0.0424 giving induc-
tivity βe(qR/L⊥)2, thermal nonadiabaticity(me/MD)(qR/L⊥)2, collisionality 0.51(νeL⊥/cs)µ̂
and toroidal curvature forcing 2L⊥/R, respectively.

FIG. 2: Beta scaling of the transport ExB fluxes for delta-FEFI in full flux surface cases. The
point entering the central frame bottom is the magnetic flutter, which is small for beta below the
MHD regime. The trend is similar to fluid and gyrofluid cases with ion and electron temperature
gradients.
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The computational grid is 64× 1024× 32 in {xys} and 32× 16 in {zw} on a domain of
62.8ρs×1499ρs×2πqRand−5< z/V < 5 and 0<wB0/T < 10 respectively. Fluxtube bound-
ary conditions are as described in Ref. [14]; it is important to note that periodic conditions inx
are very damaging due to the admittance of an unphysical radial flow jet with kx = 0. Dirichlet
boundaries are used in{zw} except atw = 0 where Neumann boundaries are used. The time
step is 0.01L⊥/cs. The numerical scheme is set up as in previous fluid and gyrofluid models
[19,12]. The brackets use the 4th order Arakawa method [20],theK terms 4th order central
differencing, the collisions use the 2nd order finite volumemethod, and the time step is the 3rd
order step from Karniadakis [21]. Additional spatial hyperviscosity applied to(δ f ) is applied
as in Ref. [12]; the delta-f gyrofluid moment variables are understood as a representation for
(δ f ) following the derivation path in Ref. [11].

The basic transport scaling (ExB fluxes for particles and electron and ion energy with the
magnetic flutter flux for electron energy) is given in Fig. 2. The result is unremarkable, serv-
ing only to confirm previous experience with fluid and gyrofluid models with ion and electron
temperature gradients [22,23]. Cases withβ̂ > 2 have so far led to very strong dynamics which
eventually crash the runs; saturated states in this MHD-dominated regime are not yet available.
With a complete gyrokinetic model covering the entire flux surface the result remains incom-
patible with the observed tokamak L-H transition. The H-mode [24,25] remains unexplained
despite many claims over the past 20 years. The relevant transition data are given in the L-H
transition region of the edge operational diagram [18], which the runs forT up to 150eV have
been able to cover.

FIG. 3: Mode structure for delta-FEFI in full flux surface cases. State variable amplitude spec-
tra peak in the MHD range (kyρs < 0.1) while current and vorticity are much flatter. The fluxes
also peak for ky much lower the linear growth peak at kyρs ∼ 0.15. The geodesic resonance
is at 0.06 (see text). The ballooning structure of amplitudes and fluxes is similar to gyrofluid
experience [26,16].

The most interesting result in these cases so far is the strength of the mesoscale MHD regime
shown by the saturated spectra. Drift-angle spectra and parallel envelopes in the nominal case
are shown in Fig. 3. Short linear runs with initial amplitudeset to 10−10 rather than 1.0 find
the strongest growth close tokyρs= 0.15, already rather long-wave in the drift wave sense; this
results from the large valueR/LT = 47 which causes ˆµwell larger than unity hence nonadiabatic
thermal electrons. The nonlinear energy transfer [10] shows strong drive of the MHD range due
to ExB vorticity advection. The above-unity values of bothβ̂ and µ̂ lead to weak damping
of the MHD shear-Alfv́en component, allowing eddies in this range to persist long enough to
enhance the gradient drive. Since the drift wave spectrum isheld together by simultaneous
coexistence of cascade/transfer to larger scale by vorticity advection and to smaller scale by
ExB density/pressure advection [27–29], the energy balance at any wavelength has a nonlinear



8 IAEA-CN-180 / THC/P4-24

input as well as an output. Since the rate of nonlinear transfer is larger than linear growth rates
everywhere in the spectrum, the overall result does not depend on linear physics. Indeed, in Ref.
[10] the transport scaling was to diverge completely from the linear growth rate result. From
the point of view of experimental observations, large scalefluctuation (> 1cm) and Bohm-like
global scaling have been reported, and fluid computations have had difficulty reproducing this.
The kinetic cases differ mainly due to the large trapped fraction in the electrons. The ExB heat
flux peak is isotropic in energy (in{zw}) at a velocity roughly 2Ve and a peak is visible atv‖ = 0
andµB0/Te = 2.5; while the thermalν∗ is roughly 13 the kinetic one at 2Ve is 16 times less or
about 0.8, which is low enough to matter. The dFEFI result produces more longwave activity
than the GEM result for the same case (cf. Ref. [10]). The trapping effect on electrons may
explain the large scale fluctuation observations.

Results on other topics such as sensitivity to ExB shear and zonal flow energetics [26,30]
cannot be shown for space reasons. These will be reported at the IAEA FEC 2010 and published
elsewhere.

3. Edge Turbulence Gyrofluid Studies

The following studies were done with global gyrofluid computations using the GEMR model:
an ELM crash scenario involving ideal MHD ballooning destabilisation in Ref. [31], which
gives a complete description of the model, a quantitative comparison with scrape-off layer tur-
bulence in Ref. [32], integration with a full-wave Maxwell solver for simulated reflectometry
suitable for quantitative experimental comparisons in Ref.[33]. In addition, a conformal co-
ordinate system was derived to minimise coordinate deformation in shaped geometry while
retaining all advantages of field alignment was given in Ref. [34].
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