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Abstract. Impurity transport driven by electrostatic turbulence is analyzed in weakly-collisional toka-

mak plasmas using a semi-analytical model based on a boundary-layer solution of the gyrokinetic (GK)

equation. Analytical expressions for the perturbed density responses are derived and used to calculate

the stability boundaries, mode frequencies, growth rates and the quasilinear particle fluxes. Parametric

dependencies of the above quantities with respect to impurity charge Z, effective charge Zeff , impurity

density scale length Lnz, and collisionality, and the effect of the impurities on the stability boundaries,

have been determined and compared with quasilinear GK simulations with GYRO resulting in very good

agreement. An analytical approximate expression of the zero-flux impurity density gradient is derived

and used to discuss its parametric dependencies.

Introduction Understanding impurity transport in tokamak plasmas is important since

fusion performance is significantly affected by impurities. To get reliable predictions for

the turbulent fluxes, nonlinear electromagnetic GK simulations are needed, but these are

costly in computing time. However, the quasilinear electrostatic approximation has been

proven to retain much of the relevant physics and reproduce the results of nonlinear GK

simulations for a wide range of parameters [1]. Reduced theoretical models, based on

quasilinear approximations, benchmarked to GK simulations can ease the interpretation

of the results of experiments or numerical simulations and can contribute to the better

understanding of the underlying processes.

Model The aim of the present work is to calculate the quasilinear GYrokinetic IM-

purity transport driven by ElectroStatic turbulence (GYIMES) using a semi-analytical

model based on a boundary layer solution of the GK equation. The model does not rely

on expansions in the smallness of the magnetic drift frequencies, and includes collisions

modelled by a Lorentz operator. Following the approach of Ref. [2,3], we use a model

electrostatic potential φ(θ) = φ0

[

(1 + cos θ)/2 + ifs sin
2 θ

]

[H(θ + π)−H(θ − π)], where

H is the Heaviside function, fs = −0.6s + s2 − 0.3s3, s is the magnetic shear and θ is

the ballooning angle. This model potential is motivated by variational analysis and GK

simulations. By assuming large aspect-ratio, low beta, toroidal symmetry, circular cross

section and weak collisionality, analytical expressions can be derived for the ion, impurity
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and electron perturbed densities. The quasi-neutrality equation is solved numerically to

obtain the frequencies and growth rates of the unstable modes, including the effect of

impurities on these modes, and the quasilinear impurity particle fluxes. In this paper, we

study only ion-temperature-gradient (ITG) turbulence dominated cases, but the model is

suitable for trapped-electron mode turbulence as well. Using the analytically calculated

expression for the perturbed impurity density response, we derive an approximate expres-

sion for the zero-flux impurity density gradient (the so-called peaking factor). Such a zero

impurity flux region is relevant to steady state plasmas in the core of tokamaks since the

impurity influx occurs through the edge.

Perturbed density responses The perturbed electron, ion and impurity responses

are obtained from the linearized GK equation. We assume the following ordering of the

electron/ion bounce frequencies and the eigenfrequency of the mode, ωbi ≪ ω ≪ ωbe,

and consider weakly-collisional plasmas so that ν⋆e = νe/ǫωbe ≪ 1, where ǫ = r/R and

νe is the electron collision frequency. Expanding the perturbed electron distribution as

ĝe = ge0 + ge1 + ... for νe/ǫωbe ≪ 1 and ω/ωbe ≪ 1 we find that the electron GK equation

can be written as

(ω − 〈ωDe〉)ge0 −
iνe

ǫK(κ)

∂

∂κ
Ĵ(κ)

∂ge0
∂κ

= −e〈φ〉
Te

(ω − ωT
∗e)fe0, (1)

where κ = [1− λB0(1− ǫ)] /(2ǫλB0) is the trapping parameter, ωT
∗a = ω∗a

[

1 +
(

x2

a − 3

2

)

ηa
]

,

ω∗a = −kθTa/eaBLna is the diamagnetic frequency, kθ is the poloidal wave-number, xa =

v/vTa, vTa = (2Ta/ma)
1/2, ηa = Lna/LTa, Lna = −[∂(lnna)/∂r]

−1, LTa = −[∂(lnTa)/∂r]
−1,

Ĵ = E(κ)+ (κ− 1)K(κ), E(κ) and K(κ) are the complete elliptic integrals. The bounce-

average of the potential is

〈φ〉 = φ0 {E(κ)/K(κ) + i(4fs/3) [(2κ− 1)E(κ)/K(κ) + 1− κ]} ,

and the orbit-averaged precession frequency for trapped electrons is

〈ωDe〉 = ωD0 [E(κ)/K(κ)− 1/2 + 2s (E(κ)/K(κ) + κ− 1)] ,

where ωD0 = −kθv
2/ωceR and ωca = eaB/ma is the cyclotron frequency. The second term

on the left of Eq. (1) represents the Lorentz collision operator.

In the limit of small collisionalities, we can construct a boundary layer solution to Eq. (1)

which reads

ge0 = gouter

(

1− exp
[

−(1− κ)
√

ûK(κ)/ν̂
])

, (2)
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where û = −i(y − 〈ωDe〉/ω0), ν̂ = νe/ω0ǫ, ω0 = |ℜ{ω}|, y = ω/ω0 and

gouter =
e〈φ〉(ωT

∗e − ω)fe0
Te(ω − 〈ωDe〉)

. (3)
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Figure 1: Boundary layer and numerical solu-
tions for |ge0| as function of κ. The lines cor-
respond to ν̂ = 0.01, 0.1, 1, 5 (from thinner to
thicker).

To make analytical progress we will ap-

proximate the elliptic integral in the expo-

nent of ge0 with a constant value K(κ) ≃
∫

1

0
K(κ)dκ = 2. Interestingly, the bound-

ary layer solution (2) is a very good approx-

imation of the numerically obtained distri-

bution function ge0 even when ν̂ is of order

unity. Figure 1 shows the absolute value of

the trapped electron distribution function

as a function of the trapping parameter κ

for various ν̂ and fs = 0.18, y = −1 + 0.2i

and ω̃D = 0.6. Solid (black) line is the nu-

merical solution of Eq. (1), dashed (red)

line is the boundary layer solution from Eq. (2) using a constant approximation for

K(κ) = 2 in the exponent.

The perturbed electron response is proportional to
〈∫

ge0d
3v
〉

= 4
√
2ǫ

∫∞

0
v2dv

∫

1

0
K(κ)ge0dκ,

where, using the solution from Eq. (2) and the identity

∫

1

0

{

E(κ) + i
4fs
3

[(2κ− 1)E(κ) + (1− κ)K(κ)]

}

dκ =
4

3

(

1 + i
4fs
5

)

,

the κ-integral can be evaluated. Performing the velocity-space integration, the perturbed

electron density response becomes

n̂e

ne

/
eφ

Te

= 1− φ̃

{√
2ǫ

[

ω̂η∗e −
3

2

(

ηeω̃∗e −
ω̃Dt

2
ω̂η∗e

)

F1

5/2

(

ω̃Dt

2

)]

(4)

−Γ(3
4
)
√
ǫν̂t√−iπy

[

2ω̂η∗eF3/2
3/4

(

ω̃Dt

2

)

− 3ηeω̃∗e

2
F3/2

7/4

(

ω̃Dt

2

)]

}

,

where φ̃ = (1 + 4ifs/5)4φ0/(3πφ), ω̃Dt = ωD0/(ωx
2

e), ν̂t = ν̂x3

e, ω̃∗a = ω∗a/ω, ω̂η∗a =

1− (1−3ηa/2)ω̃∗a and Fa
b (z) = 2F0 (a, b; ; z), where 2F0 is the generalized hypergeometric

function. Fa
b (z) incorporates the full effect of the drift resonances.

For the ions, we neglect the parallel compressibility by assuming k‖vT i ≪ ω. In this

limit, the GK equation can be solved neglecting the parallel derivative and replacing the

magnetic drift frequency ωDi with its weighted flux-surface averaged value 〈ωDi〉φ, where
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〈X(θ)〉φ =
∫ π

−π
X(θ)φ(θ)dθ/

∫ π

−π
φ(θ)dθ. Then the perturbed ion density becomes

n̂i

ni

/
eφ

Ti

= −ω̃∗i +

(

3ω̃Dsi

2
− bi

)[

ω̂η∗i −
5

2
(ηiω̃∗i − ω̃Dsiω̂η∗i)F1

7/2 (ω̃Dsi)

]

. (5)

Here, ba = 〈bsa〉φ = ba0 [1 + s2(2π2 − 12 + ifs(2π
2 − 3))/(6(1 + ifs))] is the weighted flux-

surface averaged value of the finite Larmor radius (FLR) parameter, bsa = ba0(1 + s2θ2),

ba0 = (kθρsa)
2 and ρsa = vTa/

√
2ωca. Only the terms linear in bi0 were kept, an approxima-

tion that is typically valid for the fastest growing ITG modes (kθρsi ∼ 0.2). The averaged

magnetic drift frequency is ω̃Dsa = [6 + (9 + 16ifs)sωDa0] / [12(1 + ifs)ω], where ωDa0 =

−2kθv
2

Ta/3ωcaR, and we used the constant energy resonance (CER) approximation for the

ion resonance [v2⊥+2v2‖ → 4(v2⊥+v‖)
2/3]. For impurities, if (Z3me/mi)

1/2(nzZ
2/ni)ǫν⋆e ≪

1, collisions can be neglected and we have

n̂z

nz

/
Zeφ

Tz

= −ω̃∗z +

(

3ω̃Dsz

2
− bz

)[

ω̂η∗z −
5

2
(ηzω̃∗z − ω̃Dszω̂η∗z)F1

7/2 (ω̃Dsz)

]

. (6)

The dispersion relation follows from the quasi-neutrality condition n̂e/ne = (1−Zfz)n̂i/ni+

Zfzn̂z/nz, where fz = nz/ne is the fraction of impurities.

Mode frequencies and growth rates Analyzing the dispersion relation, we find that

for moderate or high charge number (Z > 10) the eigenfrequency and stability boundary

are only weakly affected by increasing Z for constant Zeff , and are approximately equal

to the corresponding quantities in a pure plasma [3]. For lower Z, especially for helium

or carbon dilutions, the effect of impurities influences the eigenfrequency and thus the

stability boundary significantly. Figure 2 shows the Z and Zeff-scalings of the normal-

ized mode frequency and critical ion temperature gradient for marginal stability for the

parameters s = 1, q = 2, a/R = 1/3, a/r = 2, a/Lne = 1 and kθρs = 0.2.
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Figure 2: (a): Normalized mode frequency (in units of cs/a) vs. Z (b): Critical ion temperature
gradient vs. Z. Dashed: analytical expression from [3]. Dots: Zeff = 1.5; squares: Zeff = 2.

If the mode is far from marginal stability, the effect of increasing charge number affects

the growth rates and mode frequencies only weakly, see Fig. 3a. The main reason for this
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is the fact that the imaginary part of the impurity hypergeometric function is negligible

compared with the ion term for Z >∼ 10. Figure 3b shows that the absolute values of the

eigenfrequencies and growth rates decrease with increasing Zeff , reflecting the fact that

the impurity terms of the dispersion relation start to play a larger role when the impurity

density is increased, and the presence of impurities is stabilizing.
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Figure 3: Mode frequency (solid) and growth rate (dashed) (in units of cs/a) (a) Zeff = 1.5; (b)
Z = 6. The other parameters are a/LTe = a/LT i = 3, s = 1, q = 2, a/R = 1/3, r/a = 1/2,
a/Lne = 1 and kθρs = 0.2 (GA standard case [4]). The dots and squares are the corresponding
GYRO results.

Impurity particle fluxes The quasilinear particle flux for species a is given by

Γa = −kθpa
eB

∣

∣

∣

∣

eaφ̄

Ta

∣

∣

∣

∣

2

ℑ
(

n̂a/na

eaφ̄/Ta

)

, (7)

where the bar denotes flux-surface averaged quantities, φ̄ = (1 + ifs)φ0/2 and n̂a/na is

the nonadiabatic perturbed density response. The quasilinear fluxes are evaluated using

the expressions for the perturbed electron, ion and impurity densities from (4), (5) and

(6), respectively.
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Figure 4: Impurity flux Γ̂z, normalized to kθpe/eB
∣

∣eφ̄/Te

∣

∣

2
, compared with linear GYRO results

(dots) for the GA standard case. (a) Γ̂z vs. Z for Zeff = 1.5; (b) Γ̂z vs. Zeff for Z = 6 (solid),
Z = 10 (dashed).
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Solving the dispersion relation for the unstable frequencies and growth rate and calculating

the normalized impurity flux from (7) we find that it is reduced with increasing charge

number if Zeff is kept constant, as shown in Fig. 4, although that is mainly due to the

reducing impurity fraction nz/ne ∼ 1/Z2. The normalized flux increases for increasing

impurity density, and this is more pronounced for impurities with lower Z since the relative

increase in Zeff is larger than for high Z.
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Figure 5: Normalized impurity flux Γ̂z compared with linear GYRO results (dots) for the GA
standard case. (a): Γ̂z vs. normalized collisionality (in cs/a) for Z = 6 and (solid) Zeff = 1.5,
(dashed) Zeff = 2; (b): Γ̂z vs. inverse radial impurity density gradient for the parameters: solid
Zeff = 1.5, Z = 6, dashed: Zeff = 2, Z = 6, dotted: Zeff = 2, Z = 10.

Collisions do not affect the mode frequencies, growth rates and impurity fluxes (see

Fig. 5a) significantly. This is in contrast to the very sensitive dependence of the elec-

tron particle flux on collisionality, for which in general a sign change from inward to

outward is expected at very small collisionalities. We note that the impurity flux changes

sign at approximately the same value of R/Lnz, as shown in Fig. 5b, independently of Z,

Zeff and many other plasma parameters.

Peaking factor Using the analytically calculated expression for the perturbed impurity

density response, it is possible to derive an approximative expression for the zero-flux

impurity density gradient. Noting that the impurity hypergeometric function can be

replaced by its asymptotic limit for small arguments, F1

7/2 (ω̃Dsz) = 1 (which is a good

approximation for heavy impurities since the argument ω̃Dsz ∝ 1/Z) and furthermore

assuming that the impurity FLR-term is negligible, bz ≪ 3ω̃Dsz/2, the zero-flux conditon

becomes

ℑω̃∗z = ℑ
{

3ω̃Dsz

2

[

ω̂η∗z −
5

2
(ηzω̃∗z − ω̃Dszω̂η∗z)

]}

. (8)

From this we find that the expression for the zero-flux impurity density gradient is

R

Lnz

=
(2 + 3s)

2

1− 2

1 + γ̂2

kθρs
Zτzωn

0

(

R

LTz

− (2 + 3s)5

6

)

1 +
2 + 3s

1 + γ̂2

kθρs
Zτzωn

0

(9)
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where we neglected terms of order 1/Z3 in the expression of the impurity flux and used

the approximation ω̃Dsz ≃ (2 + 3s)ωDi0/4ω (valid if fs ≪ 1). Here, γ̂ = γ/ω0 is the

normalized growth rate, ωn
0
is the absolute value of the eigenfrequency in units of cs/R,

kθ is the poloidal wave-number of the most unstable wave, ρs is the ion sound radius,

τz = Te/Tz is the electron-impurity temperature ratio, and a and R are the minor and

major radii of the torus.

The zero-flux impurity density gradient R/Lnzc is rather insensitive to Z and Zeff for

moderate or high Z, as been noted noted previously in quasilinear fluid simulations [5].

The reason is that the convective flux originating from the curvature drift is nearly inde-

pendent of Z, while the convection caused by thermodiffusion decreases with increasing

Z. For higher impurity temperature gradient or higher kθρs the zero-flux impurity density

gradient is lower, a trend which is in good agreement with numerical results. If, for in-

stance, the inverse electron density scale length a/Lne or the temperature ratio τi = Te/Ti

are changed, the unstable mode frequencies and growth rates will also change and R/Lnzc

will be affected by that, especially for low Z when the effect of thermodiffusion cannot

be neglected. This means that in scenarios with more peaked electron density profiles or

strongly differing τi, R/Lnzc is expected to be different from that in scenarios with flat

density profiles.
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Figure 6: Zero-flux impurity gradient as func-
tion of Z from Eq. (9), together with lin-
ear GYRO results (dots for adiabatic electrons,
squares for kinetic electrons) for the parame-
ters: s = 1, q = 2, a/R = 1/3, a/r = 2,
a/Lni = 1 a/LT i = a/LTe = a/LTz = 2, τz = 1,
Zeff = 1.01 and kθρs = 0.3.

Figure 6 shows the peaking factor as func-

tion of charge number from Eq.(9), to-

gether with the results of linear GYRO

simulations. For the parameters given in

the caption of Fig. 6, the normalized fre-

quency is ωn
0
≈ 0.86 and growth rate γ̂ ≈

0.44 for adiabatic electrons and ωn
0
≈ 0.81

and γ̂ ≈ 0.4 for kinetic electrons (note that

ωn
0
is normalized to cs/R). The slight Z-

dependence of the eigenvalues and the dif-

ference between the eigenvalues for adia-

batic and kinetic electrons, does not have

much effect on the analytical expression for

the peaking factor given in Eq.(9). The

solid line of Fig. 6 is the expression given

in Eq. (9) for ωn
0
≈ 0.86, γ̂ ≈ 0.44. As expected, the peaking factor increases with Z and

saturates for high Z. This is in agreement with experimental trends for high-Z impurities

and is due to the fact that for high Z, the effect of thermodiffusion is less important and

the peaking factor is determined by the balance of curvature drift and diffusion.
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Conclusions In this paper we presented a semi-analytical model for impurity transport

driven by electrostatic turbulence. The model does not rely on expansions in the small-

ness of the magnetic drift frequencies, and includes electron-ion collisions modeled by a

Lorentz operator. The results agree well with linear gyrokinetic simulations with GYRO.

It includes some effects that previously have been neglected in analytical calculations,

for instance collisions and magnetic drifts are treated with more accuracy than in other,

existing semi-analytical models, but it is still simple enough to ease the interpretation of

certain physical effects, as we illustrated with the approximation for the zero-flux impurity

density gradient. Because of its simplicity, it is straightforward to extend it by including

several impurity species or include it in transport simulations. However, due to the model

electrostatic potential used in the calculations, reliable quantitative predictions can only

be obtained in the moderate shear region.
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