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Abstract. The turbulent heat and momentum fluxes obtained from local, nonlinear gyrokinetic simu-
lations with mean toroidal flow are presented. The behavior of the fluxes are characterized by scans in
temperature and flow gradient for both zero and finite magnetic shear. Linearly unstable eigenmodes
are absent for sufficiently large flow shear, but transient linear growth is found to drive subcritical tur-
bulence whose amplitude increases with flow shear. Consequently, the heat fluxes are minimized at a
finite flow shear. By considering the intersection of contours of heat flux (or injected power) and the
ratio of momentum to heat flux (inversely proportional to beam energy), bifurcations in the temperature
and flow gradients are observed. An analysis is presented showing when such bifurcations are possible
and how large the jumps in gradient can be. This zero-dimensional analysis is then extended to the
one-dimensional case using the multi-scale transport solver, TRINITY. Using model turbulent fluxes, the
plasma performance is found to be optimized at a finite value for the ratio of applied torque to power.

1 Introduction

It is well known that the performance of fusion devices is limited by heat fluxes arising
from small-scale turbulence driven by large-scale profile gradients. The presence of this
turbulence is not inevitable, as demonstrated by the formation of transport barriers in
H-mode and advanced scenario discharges in a wide range of experimental devices. The
details of how these transport barriers are triggered and saturated vary from case to case,
but a common feature is the favorable role played by mean E x B flow shear and zero or
negative magnetic shear in providing steeper temperature gradients [1, 2]. Consequently,
it is of great interest to determine how localized regions of strong E x B flow shear can
develop and the extent to which this flow shear can suppress turbulent transport.

Previous numerical studies of the effect of mean flow shear on turbulence have found
that the shear in the E x B component of the flow is stabilizing and can, in some cases,
fully quench turbulent transport [3, 4, 5|. However, the shear in the parallel flow (hence-
forth referred to as the parallel velocity gradient, or PVG) has been shown to drive linear
instability [6, 7]. Since the flow is constrained to be purely toroidal in the limit of large
flow velocity (of order the ion thermal speed), the relative importance of the E x B and
parallel velocities is set by the ratio of the poloidal to toroidal magnetic field [8]. The
turbulent transport is thus not always fully quenched and may increase with flow shear [5].

In this paper, we present new theoretical and numerical results on the effect of flow
shear on turbulence and on the subsequent evolution of the macroscopic profiles over the
confinement time scale.
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Figure 1: Gyro-Bohm normalized turbulent heat (top) and momentum (bottom) fluxes vs
shearing rate for different temperature gradient scale lengths. Fluxes on left correspond
to § = 0.8 (figures taken from [11]) and those on right to § = 0 (figures taken from [12]).

2 Turbulent heat and momentum fluxes in the presence of mean flow shear

To determine the properties of turbulent fluxes in the presence of mean flow shear, we
conducted a series of nonlinear simulations using the gyrokinetic flux tube code GS2 [9].
The magnetic geometry corresponds to the Cyclone base case [10], with varying values of
the inverse temperature gradient scale length, R/Lr, and the E x B flow shearing rate,
ve = (r/q)(dw/dr), as well as two values of magnetic shear, § = dlng/dInr = 0.8 and 0.
The key results from these simulations are given in Figs. 1-3 and 6.

The turbulent momentum and heat fluxes for the zero magnetic shear [12] and finite
magnetic shear (s = 0.8) [11] cases are qualitatively similar (Fig. 1), but quantitatively
the § = 0 case has better transport properties. For sufficiently large R/Ly, the heat flux
decreases to a minimum around g = v,/ R before increasing monotonically. For a given
R/ L, this minimum is lower for the § = 0 case, but it occurs at approximately the same
vg. The momentum flux increases from zero to a local maximum, followed by a local
minimum around g = v,/ R and subsequent increase. The turbulent Prandtl number,
Pr; = v/xt, with Q; = —xdT;/dr and 11, = —vym; Ro(qRo/7r)vE, is given in Fig. 2. For
moderate to large g, Pr; is order unity and approximately independent of R/Ly and vg.
Its variation at small g is consistent with the “E x B shear pinch” discussed in Ref. [13].

For both values of §, the turbulence for vg 2 vy, /R is subcritical (no linearly unstable
eigenmodes) and is a result of transient growth driven by the PVG [14]; for the § = 0
case, all growth is transient [15]. Amplification factors for the transient growth increase
with v beyond v ~ vy /R, as shown in Fig. 3. This transient amplification is not
a result of Floquet oscillations: it is driven by the PVG (and is thus found in a slab
geometry, as shown in Ref. [14, 15]). Furthermore, this PVG-driven turbulence is not to
be confused with the increase in fluxes arising from linearly unstable eigenmodes driven
by the PVG [5, 8] (seen for R/Ly = 6.4 and 6.9 at vg ~ 0.4vy,/R in Fig. 1), which we
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Figure 2: Turbulent Prandtl number for § = 0.8 (left, [11]) and § = 0 (right). For
moderate to large yg, Pr; is approximately independent of vg and R/ L.
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Figure 3: Turbulent heat flux (normalized to its initial value) vs. time for § = 0.8

(left, [11]) and § = 0 (right, [12]). For sufficiently large g, transient amplification factor
increases with flow shear.

find are stabilized by sufficiently large vg.

3 Bifurcations in temperature and flow gradients: 0D analysis

Thus far we have determined the turbulent fluxes associated with given values of R/Lr
and yg. We now consider the inverse problem, in which we predict R/Ly and ~g for given
values of the input heat and momentum. In order to gain an understanding of what types
of solutions are possible, we first employ a simple model for the heat and momentum
fluxes [16] designed to reproduce the qualitative behavior exhibited in our simulations.
The Gyro-Bohm normalized heat flux is approximated as offset linear:

R R
Qr = Xt [L_T - Lo (7E>} (1)
where R Ro/
QYg iy /Vin; + K
ik — 2
L. S Tx e flo 20) )

is the yg-dependent critical temperature gradient scale length. Here k is R/Ly.(vg = 0),
and « and y; are free parameters, which we specify to best fit the results of the § =
case (chosen because it has favorable transport properties relative to the § = 0.8 case).
Curves showing @Q); as a function of g for different values of R/ Ly are given in Fig. 4.
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Figure 4: (Left): Illustration of the simple model (Egs. (1)-(2)) used for turbulent heat
flux. Compare with upper right panel of Fig. 1. (Right): Contours of constant I1/Q
(normalized to Gyro-Bohm fluxes) arising from the model. Increasing I1/¢) corresponds
to moving towards the top right of the figure. The dashed line represents a heat flux value
for which there are three solutions for R/Ly. Both plots from Ref. [16].

The Gyro-Bohm normalized turbulent momentum flux is specified in terms of ); through
Prtl
R R
, YE 4 (3)
Vthi R/LT T

Based on the results presented in Fig. 2, we take Pr; to be a constant value of approxi-
mately unity. The total heat and momentum fluxes (Gyro-Bohm normalized) are given by
the sum of the turbulent and neoclassical contributions: @) = Q; + @), and II = II; + 1L,.
While the neoclassical contributions are typically small, they are often comparable to the
turbulent ones in transport barriers. We find that they are necessary (in the absence of
any other flux contributions) to obtain transport bifurcations.

Ht = —Pr

The solutions for R/Ly and 7g corresponding to given values of @ and II/Q (label-
ing injected power and beam energy, respectively) are shown in Figs 4 and 5. From Fig. 4
we see that for a range of values of @ and I1/@Q, multiple solutions for R/ Ly exist. This is
understood by considering the contours of constant ) and I1/Q in the (R/Lr,vg) plane,
given in Fig. 5. Far above (below) the R/Lz.(vg), the fluxes are dominated by turbulent
(neoclassical) contributions. In these regions of parameter space, Eq. (3) and an analo-
gous equation for the neoclassical fluxes indicate that II/Q) contours will be straight lines
whose slopes depend on the Prandtl number. Since the neoclassical Prandtl number, Pr,,,
is typically much smaller than Pr,, the slope of the II/Q) curves will be smaller in the
neoclassical dominated region than in the turbulence dominated region. The neoclassi-
cal heat flux is independent of vg, and thus constant-() curves are horizontal lines for
R/Ly < R/Ly.. For R/Ly > R/Lt., Q =~ @, which from Eq. (1) gives constant-Q
curves with the same shape as the curve of R/Lz.. In the narrow region of parameter
space surrounding the R/ L. curve, the neoclassical and turbulent contours join smoothly.

Intersections of the constant @ and II/Q curves give the local solutions for R/Ly and
~ve. For large (small) @, the fluxes are purely turbulent (neoclassical) and there is only
one intersection with the straight IT1/Q constant line. In the region where Q; ~ @,
the II/@Q constant curve is no longer a straight line, and it is possible to have two or
three intersection points. The curve () = @) in Fig. 5 with three intersections cor-
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Figure 5: Curves of constant ) (dashed lines) and IT1/Q (solid lines), with the R/ Ly, given
by the red line. The decrease in R/ Ly, for yg 2 1 is a result of PVG-driven subcritical
turbulence. Intersections of the solid and dashed lines correspond to solutions of the
system. The plot on the right shows either one (A1), two (A3, C3) or three (A2, B2,C2)
solutions are possible depending on the value of ). Both plots from Ref. [16].

responds to the three solutions for R/Ly shown in Fig. 4. The criterion for having
multiple solutions is (d(R/Lr)/dvg)o < (d(R/Lt)/dve)njq in the vicinity of R/Lyp.,
where the subscript on the derivatives indicates the quantity held fixed. Expanding in
(R/Lr—R/Lr.) ~ xn/Xt < 1, it can be shown that the approximate criterion for multiple
solutions is [16]

L) , LILr (Rl oRPG R (1)

dvg ~ Pr; Q qR? YE r Pry vy @

where the second inequality follows from Eq. (3) and its neoclassical analog (along with
the assumption Pr, < Pr).

(4)

From the second inequality in Eq. (4), it is evident that bifurcations are not possible
for II/@Q too small. There is also an upper bound on I1/Q), obtained by rearranging the
first inequality of Eq. (4). Consequently, bifurcations are possible only in a limited window
in IT/@Q. The necessary, but not sufficient, condition for bifurcations is [16]

<d(R/LTC) )l < E < Pr ﬁ R < YE,mazx >2 d(R/LTc)
d/YE Ye=0 Q o ! T Uthi R/LTC,max d/yE

Pr? qR R

Pr; r vy,

(5)

Y
=0

where R/L7cmae 18 the maximum value of R/Lr., Vg mae is the corresponding vg, and
we have assumed d*(R/Lr.)/dv% < 0 so that d(R/Lr.)/dyg is largest at vg = 0. This
interval is shifted to lower (higher) II/Q values by decreasing (increasing) qR/r. It is
widened by decreasing Pr,, and increasing d(R/Lz.)/dyg (i.e. enhancing suppression of
turbulence, as in the case of zero magnetic shear). Using approximate values taken from
the § = 0 simulations (Pr,, = 0.1, Pr; = 1, ¢R/r = 8, YE.maz = Vini/ R, R/Lremaz =~ 11,
d(R/Lr.)/dVE|yg=0 = BR/vw,;), we get 0.016 < I1/Q) < 0.331.

We now return to the nonlinear gyrokinetic simulations for § = 0 and consider con-
tours of constant () and I1/Q). These contours are formed by interpolating our large data
set using radial basis functions with a linear kernel [17]. The results [12] are shown in
Fig. 6. For the range of I1/Q values considered, there are multiple solutions for R/ Ly and
~vg for a range of fixed @ and I1/Q values. Thus bifurcations exist in which significant
shifts in R/Ly are found (for the case considered in Fig. 6, a shift of about fifty percent).
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Figure 6: (Left): Contours of constant II/Q) show bifurcations in Ry/Lr as @ is varied.
Cf. right panel of Fig. 4. (Right): Contour of constant () shows bifurcation in yg as I1/Q
is varied. Note that 7" is assumed constant. Both plots from Ref. [12].

4 1D transport model

Ultimately, we want to predict the self-consistent evolution of radial plasma profiles as
they interact with the turbulence. Because of the enormous range of space-time scales
involved and the high dimensionality of the problem, resolved first-principles simulations
of the full core volume over the confinement time are very challenging using conventional
techniques. To address this problem, we use the gyrokinetic transport solver TRINITY [18],
which employs a multi-scale model [19, 20] that arises from the 0 f gyrokinetic ordering.
By assuming a separation in space and time scales between the turbulence and the plasma
profiles (generally valid for small-p, devices), we obtain separate (coupled) equations de-
scribing their evolution. The fluctuation equations are then solved locally on the turbu-
lence time scale, and the resulting ensemble-averaged fluxes are input in the equilibrium
equations, which are solved globally on the confinement time scale. This amounts to
coupling multiple flux tube simulations at different radii through the transport equations
to obtain self-consistent plasma profiles and corresponding turbulent fluxes. Results from
TRINITY simulations with nonlinear fluxes calculated by the gyrokinetic turbulence codes
GS2 and GENE are in reasonable quantitative agreement with L-mode and H-mode dis-
charges on JET and ASDEX Upgrade [18].

Here, we present results from TRINITY simulations using the model turbulent fluxes de-
scribed by Egs. (1) and (3). These results are intended to provide a qualitative picture
of fusion performance in devices with neutral beam injection of momentum and energy.
Concentric, circular flux surfaces are used, with a flat safety factor profile (and thus s =0
everywhere, so that our turbulent flux model should be a good approximation). Energy
and toroidal angular momentum are injected externally using a Gaussian deposition pro-
file centered at the magnetic axis with a half-width of one-tenth the minor radius. The
angular momentum and ion temperature are fixed at the outer boundary of the simulation
domain (80% of the minor radius) to zero and 100 eV, respectively. A series of simulations
were run in which the total input power and beam energy were varied over a wide range.

The key result is given by Fig. 7, which shows the central ion temperature Ty as a function
of the ratio of injected torque, 74, to power, P, for a range of F;,. We have switched from
Gyro-Bohm normalized I1/Q to 74/ P;, because the Gyro-Bohm normalization is a func-
tion of temperature, which varies radially in our 1D model. In order to make connection
with the 0D results, we also present in Fig. 7 a plot of normalized I1/Q) at mid-radius for
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Figure 7: Central temperature (left) and Gyro-Bohm normalized I1/Q) at mid-radius
(right) vs. ratio of external torque to power for a range of input powers. The optimal
ratio shifts to lower values as power is increased. Gray shaded region corresponds to
accessible torque to power ratios on JET [21]. Green shaded region corresponds to I1/Q
range satisfying approximate necessary condition for bifurcation (Eq. (5)).

each of our simulations. Increasing 7,/ P, from zero (at fixed P,,) initially results in larger
Ty, as more momentum is being injected and thus larger flow shears are achieved. How-
ever, as the flow shear gets very large, the PVG-driven subcritical turbulence increases
transport, so T decreases with increasing 7,/ P;, for large 7,/P;,. The maximum 7j is
thus achieved at a finite value of 7,/F;,, which decreases with increasing power. Thus
increased beam power leads to an increase in Ty not only due to more injected energy, but
also because the optimal flow shear for confinement is achieved at smaller 7,,/F;, (which
is closer to where many modern fusion experiments operate [21, 22]).

5 Summary and discussion

Nonlinear gyrokinetic simulations have been used to identify transport bifurcations, in
which the temperature gradient and rotational flow shear have multiple solutions for
given values of @) and I1/Q. These bifurcations require finite neoclassical transport and
exist in the absence of any external mechanisms, such as proximity to low order rational
magnetic surfaces or coupling to MHD modes. The conditions under which such bifur-
cations exist were derived, showing that they are only possible within a limited range of
IT1/Q values. The jumps in R/Ly and g associated with the bifurcation were found to
be limited in some cases by the existence of subcritical turbulence driven by shear in the
parallel component of the mean toroidal flow velocity.

Preliminary results from the gyrokinetic transport solver TRINITY with model turbulent
fluxes indicate there is an optimal ratio of external torque to power for confinement (aris-
ing due to subcritical turbulence driven at large flow shearing rates). This optimal ratio
is dependent on the beam power, decreasing towards experimentally obtainable values
as power is increased. Further simulations with radially varying current profiles should
provide information on the location and radial extent of regions of enhanced temperature
gradient. Based on our local gyrokinetic simulation results (as well as previous numerical
and experimental evidence), we expect these regions to occur where magnetic shear is
low. Extending this work to use fluxes from first-principles turbulence simulations with
nonlinear gyrofluid and gyrokinetic solvers is an ongoing project.
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