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Abstract. A new method of controlling turbulent transport is proposed. The method is focused on low frequency 
zonal flows (ZFs) driven by geodesic acoustic modes (GAMs). In order to describe their dynamics with 
experimental parameters, the damping rates of GAMs and ZFs are introduced into fluid models. The coupling 
equations among turbulence, GAMs and ZFs are derived, and the parameter region where ZFs is effectively 
driven is revealed. It is also shown that it is possible to control ZFs by neutral beam injection (NBI), since the 
growth rate of GAMs are affected by energetic particles. Furthermore the impacts of GAMs on the partition of 
heating power is addressed. 
 
1. Introduction 
  In order to realize the nuclear fusion, plasmas with high ion temperature have to be 
maintained. There are two ways to increase ion temperature: one is to suppress the transport, 
and another is to heat bulk ions. 
  The turbulent transport is strongly affected by low frequency zonal flows (ZFs) and 
geodesic acoustic modes (GAMs) which are destabilized by micro-scale turbulent 
fluctuations. In order to understand the turbulent transport, the energy partition among 
turbulence, ZFs, and GAMs is an essential issue, because the effects of ZFs and GAMs on 
transport differ. The coupling between turbulence and ZFs, and the one between turbulence 
and GAMs are investigated in experiments, simulations and theories [1]. The competition 
among turbulence, ZF and GAM has been numerically studied [2]. Recently, GAMs are 
shown to be composed of radially-propagating eigenmodes [3]. As a consequence, ZF and 
GAM interact not only indirectly through turbulence, but also directly [4]. This direct 
coupling between GAM and ZF affects the partition energy among turbulence, ZF, and GAM. 
The understanding of dynamics of ZF which is driven by GAMs is required, because the 
transport can be controlled by changing the amplitude of ZF. 
  Recently, another novel role of GAMs has been pointed out, namely that ions can be heated 
by GAMs [5]. GAMs can also be excited by energetic particles [6]. The energy exchange rate 
from energetic particles to bulk ion via GAMs can contribute to substantial ion heating. A 
large amplitude of GAMs has been observed in Large Helical Device (LHD) plasma which is 
sustained by Neutral Beam Injection (NBI) [7] and the impacts of these GAM are discussed 
here.  
  We investigate the nonlinear dynamics of ZFs driven by GAMs. The outline of this paper is 
as follows. In Sec. 2, model equations for analyses are described. In Sec. 3, the nonlinear ZFs 
dynamics is described. In Sec. 4, the discussion on the role of GAMs on heating partition is 
described. Summary is given in Sec. 5. 
 
2. Models 

The fluid equations are employed, and the damping rates of GAMs and ZFs are introduced 
as parameters, in which kinetic processes are taken into account. A focus is placed upon the 
response of Reynolds stress, which is evaluated from the action conservation equation. Then, 
the quadripartite coupling equations for turbulence, radially inward and outward propagating 
GAMs and ZFs driven by GAMs are derived. 
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2.1. Basic equations 
	
 We consider a high aspect ratio, circular cross section toroidal plasma. The magnetic field is 
given as 
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ε
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where 

€ 

B0  is the strength of magnetic field, 

€ 

eζ , eθ  express the unit vectors in toroidal and 
poloidal directions, 

€ 

q is the safety factor, and 

€ 

ε  is the inverse aspect ratio (

€ 

ε<<1). The 
fluid equations in this magnetic field configuration are written as  
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Here, 

€ 

U, v, n are the toroidal component of vorticity (magnetic surface averaged), velocity 
field, and the perturbed density normalized by the equilibrium density, respectively. The 
plasma major radius is denoted by 

€ 

R, the sound velocity is 

€ 

cs, and the parallel turbulent 
viscosity is expressed by 

€ 

µ||, which is treated as a parameter. The damping rate is introduced 
as 

€ 

γ(ω)  in the vorticity equation. As for GAMs, the Landau damping [8] and the effect of 
energetic particles are considered. As for ZFs, the ion-ion collisional damping rate is 
introduced. 

€ 

γ(ω)  is introduced here as    
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In Eq. (5), 

€ 

δh  is the driving term from energetic particles [5], 

€ 

vT  is the ion thermal 
velocity, 

€ 

ρT  is the ion gyro-radius calculated by the ion thermal velocity, 

€ 

q is the safety 
factor, 

€ 

τe  is the electron temperature normalized by ion temperature, 

€ 

ΩG  is defined as 

€ 

q 7 /4 +τe , and 

€ 

qr is the radial wavenumber of GAMs. 
 For the transparency of argument, we focus on Reynolds stress among other nonlinear terms, 
which are less effective on generating quasi-modes in the present circumstance [9]. As for 
parallel velocity and density, only their linear responses to the vorticity are introduced to the 
dynamics of GAMs and ZFs. Eliminating 

€ 

n  and 

€ 

v||  from Eqs. (2)-(4), the equation is 
obtained as 

          

€ 

∂U
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2

R2
−iω +

cs
2∇||

2

iω + µ||∇⊥
2

⎛ 

⎝ 
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⎠ 
⎟ U + γ (ω)U = −∇r (v⋅ ∇)vθ . (7)  

GAMs are assumed to have counter-propagating components with monochromatic 
wavenumber, 

   

€ 

U = Uω , qr
e−iωt +U−ω , qr

eiωt( )eiqr r + c.c. (8)  

Here, we choose 

€ 

qr and 

€ 

ω  to be positive. We consider spatial separation between the scales 
of equilibrium density or temperature 

€ 

LT  and GAM wavelength scale, 

€ 

qrLT >>1, and the 
choice of sign of 

€ 

qr does not change the physics of the solution. 
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2.2. Coupling equations among turbulence, GAMs and ZFs 
	
 The Reynolds stress is evaluated from the action conservation equation. The model for the 
Reynolds stress is given as [1] 

€ 

∇r(v⋅ ∇)vθ =
qr
2

B2
krkθ

(1+ k⊥
2ρs

2)2
Nkd

2k∫ . (9) 

Here, the brackets denote time averaging over a time scale much longer than the characteristic 
time scale of turbulence. The turbulence wavenumber is denoted as 

€ 

kr,kθ  and 

€ 

k⊥. The action 
of turbulence is denoted by 

€ 

Nk = (1+ k⊥
2ρs

2)2 φk
2 . The action which is modulated by GAMs 

has been obtained in [10]. The quasi-linear response to GAMs is  

€ 

Nω ,qr
(1) = kθR(ω,qr )Uω ,qr

∂N (0)

∂kr
, (10) 

where the response function is defined as 

€ 

R(ω,qr ) = i ω − qrvgr + iΔω k( )
−1

. Here, 

€ 

vg  is the 
group velocity and 

€ 

Δω k  is the nonlinear damping rate of turbulence, respectively. The 
higher order nonlinearity of the action can be expressed as 

€ 
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Here, 

€ 

U* denotes the complex conjugate of 

€ 

U . The GAM component appears in the odd-
order (2m+1), and the higher harmonics and ZF components appear in the even-order (2m), 
where m is an integer. ZF component is produced by the nonlinear coupling of radially-
counter-propagating GAMs. We neglect the components with high wavenumber such as 
  

€ 

(3ω,3qr), (0,4qr ), , since the higher wavenumber components are strongly damped. 
Truncating the nonlinear terms up to the third order, Reynolds stress is calculated by using 
Eq. (9).  
  Here, we assume the strong turbulence regime. The nonlinear decorrelation rate of 
turbulence can be written as 

€ 

Δω =ω*
ˆ φ , (12)  

where 

€ 

ω* ≡ kθT /eBLn  is the drift wave frequency, and 

€ 

ˆ φ ≡ k⊥
2Lneφ /kθT  is the normalized 

drift wave potential. Using Eq. (12), the coupling equations among turbulence, GAMs and 
ZFs are obtained as 
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∂ ˆ U Z
∂ˆ t 

= 4η ˆ φ 2 ˆ U Z − 4ηµ(1+ 2q2) ˆ φ 2 ˆ U Z − ˆ γ (ω = 0) ˆ U Z −αη ˆ φ 2( ˆ φ + iξ)−1 ˆ U P ˆ U M , (13d)

 

where 

€ 

γL  is the linear growth rate of turbulence. The time 

€ 

ˆ t  is normalized by GAM 
frequency as 

€ 

ˆ t =ωGt , where 

€ 

ωG  is the GAM frequency defined as 

€ 

ωG ≡ 2cs /R . The 
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vorticity is normalized by drift wave frequency as 

€ 

ˆ U = U /ω* . The subscripts 

€ 

P, M  and 

€ 

Z  
indicates 

€ 

(ωG ,qr), (−ωG,qr )  and 

€ 

(0,2qr ), which are radially outward and inward propagating 
GAMs and ZF driven by GAMs, respectively. The coefficients 

€ 

η, ξ, µ, s,α  are defined as 

€ 

η =
qr

2

B2
R
2cs

kθ
2

(1+ k⊥
2ρs

2)2
N (0)

Δω
∫ d2k, ξ =ωG /ω*, µ = µ||qr

2 R
η ˆ φ 2 2cs
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4kθ
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2
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2 , α = 8kθ /kr .
 

The coupling equations Eqs. (13a)-(13d) are extended from those in [4] to include the effects 
of phase information and of temporal evolution of turbulence energy. 
 
3. Nonlinear dynamics of GAMs and ZFs 
	
 We consider the situation where GAMs are driven by turbulence, but ZFs are not excited by 
quasilinear process of turbulence. The stationary state is described in Sec. 3.1. The nonlinear 
response of ZFs to a pulse perturbation of GAMs without considering the effect of energetic 
particles is shown in Sec. 3.2. The controllability of ZFs by NBI modulation is given in Sec. 
3.3. 
 
3.1. Stationary state 
  The stationary state is determined by replacing the time derivative by zero in Eqs. (13a)-
(13d). It is worth noting that radially inward and outward propagating GAMs can not exist 
together in the stationary state. ZFs driven by GAMs can not exist in the stationary state 
because the driving term becomes zero in Eq. (13d).  
 
3.2. Dynamic response of ZFs without energetic particles effect 
	
 In the first step of analysis, the nonlinear response of ZFs to a pulse perturbation of GAMs 
is studied. This analysis is a prototypical model for the experimental observations where 
GAMs are excited in an intermittent manner [11]. The time evolutions of the response of 
fields are shown in Fig. 1. In this study, the pulse of inward-propagating GAM (

€ 

ˆ U M ) is 
imposed on a stationary state of outward-propagating GAM (

€ 

ˆ U P ). After the pulse is applied, 

€ 

ˆ U M  monotonically decreases, and the fields are relaxed to the initial stationary state. During 
the time when 

€ 

ˆ U M  have finite amplitude, 

€ 

ˆ U M  and 

€ 

ˆ U P  coexist, and the ZF is excited. ZF 
affects the turbulence, and the amplitude of 

€ 

ˆ U P  decreases. In order to understand the 
behavior of ZF analytically, the linearization of deviation from the stationary state is carried 
out in the coupling equations Eqs. (13a)-(13d). The deviation from the stationary state is 
written as 

€ 

ˆ U P = ˆ U P ,s + Δ ˆ U P , ˆ U M = Δ ˆ U M , ˆ U Z = Δ ˆ U Z , ˆ φ = ˆ φ s + Δ ˆ φ , (14)  
where 

€ 

UP ,s  denotes the saturated 

€ 

UP . The linearized coupling equations are obtained as 

€ 

∂Δ ˆ φ 
∂ˆ t 

= − ˆ γ φ Δ ˆ φ + ˆ C φP ( ˆ U P ,s
* Δ ˆ U P + ˆ U P ,sΔ ˆ U P

* ) (15a)

∂Δ ˆ U P
∂ˆ t 

= −i ˆ ω PΔ ˆ U P + ˆ C Pφ Δφ (15b)

∂Δ ˆ U M
∂ˆ t 

= (−i ˆ ω M − ˆ γ M )Δ ˆ U M (15c)

∂Δ ˆ U Z
∂ˆ t 

= − ˆ γ ZΔ ˆ U Z + ˆ C Z ˆ U P ,sΔ ˆ U M . (15d)

 

Here, the coupling coefficients are  
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The analytical solution of the responses of

€ 

ΔUM  and 

€ 

ΔUZ  can be obtained as 

€ 

Δ ˆ U M = Δ ˆ U M ,0e
− i ˆ ω M ˆ t − ˆ γ M ˆ t (16a)

Δ ˆ U Z =
ˆ C Z ˆ U P ,s Δ ˆ U M ,0

−i( ˆ ω P + ˆ ω M ) − ˆ γ M + ˆ γ Z
e− ˆ γ Z ˆ t e− i( ˆ ω P + ˆ ω M ) ˆ t − ˆ γ M ˆ t + ˆ γ Z ˆ t −1( ). (16b)

 

The characteristic time of this relaxation process is dominated by 

€ 

γM  and 

€ 

γZ . The life time 
of the excited ZF 

€ 

ˆ τ ZF  can be estimated as 

€ 

ˆ τ ZF ~ ˆ γ M
−1 + ˆ γ Z

−1. (17)  
The dependence of the maximum amplitude of ZFs on the pulse height is shown in Fig. 2. 
The driven ZFs increases almost linearly for a small pulse. When the pulse height becomes 
large, the large ZFs are excited. ZF with large amplitude strongly affects turbulence, and then 
the numerical and analytical solutions deviate. The safety factor dependence of ZFs is shown 
in Fig. 3. The amplitude of ZFs decreases with the safety factor, since the damping rate of ZF 
is an increasing function of the safety factor. Substantial ZFs can be induced by radially-
counter-propagating GAMs. 
 

  
 Fig. 1: Response of turbulence, GAMs and ZF to pulse perturbation of 

€ 

ˆ U M  
 The parameters used here are 

€ 

q = 3,τe =1, qrρT = 0.1,η = 0.1, µ = 0.1, 
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€ 

ξ = 0.25, s = 0.24 . 

 
 Fig. 2: Initial pulse dependence of driven ZFs 

Black line shows the result of numerical calculation of Eqs. (13a)-(13d). Red line shows the 
result from analytical expression Eq. (16b). 
 

  
 Fig. 3: Safety factor dependence of driven ZFs 

Black line shows the result of numerical calculation of Eqs. (13a)-(13d). Red line shows the 
result from analytical expression Eq. (16b). 

 
 
3.3. Controlling ZFs by NIB modulation 
 The controllability of ZFs by NBI is discussed by introducing effects of energetic particles 
on the linear growth rate of GAMs. Here, we consider the situation when the power of NBI is 
modulated temporally, so that the energetic particle effect 

€ 

δh  can be written as 

€ 

ˆ δ h = δex sin2(Ωex
ˆ t +Θ). (18)  

Here, 

€ 

δex  is the growth rate of GAMs by energetic particles, which is related to the injection 
power of NBI, 

€ 

Ωex  is the modulation frequency of NBI, and 

€ 

Θ is the phase delay of pulse 
injection to modulation period. The analytical expression for the linear response

€ 

ΔUZ  is 
obtained as 

€ 

Δ ˆ U Z = ˆ C Z ˆ U P ,s Δ ˆ U M ,0e
− ˆ γ Z ˆ t exp −i ˆ ω M − ˆ γ M + ˆ γ Z +

δex

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ̂  t − δex

4Ωex

sin(2Ωex
ˆ t +Θ) − sinΘ{ }

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ dˆ t ∫ . (19)

The amplitude of ZFs can be controlled by NBI modulation. When the relation between the 
onset of pulse of 

€ 

ΔUM  and the phase of the modulation satisfies the condition 

€ 

Θ ~ π /2, 
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€ 

ΔUZ  becomes larger by several percent, (in the case that 

€ 

δex = 0.03,Ωex = 0.1,Θ = 0.6π ), 
which is shown in Fig. 4. 
 
 

   
  Fig. 4: Control parameters dependence of maximum amplitude of ZF  

     normalized by 

€ 

Δ ˆ U Z ,ref .  Here

€ 

Δ ˆ U Z ,ref  is the result of 

€ 

δex →0 . 
 
4. Discussion on the role of GAMs on heating partition 
  GAMs have another important characteristic for the dynamics of main plasmas. GAMs 
transfer the energy to bulk ions through Landau damping. Here, we show the characteristics 
of ion heating by GAMs that are excited by energetic ions. The heating rate of main ions by 
GAMs 

€ 

PG→ i  is given within the framework of quasi-linear theory as [5] 

 

€ 

PG→ i =
ni miTiqr

2 φG
2

RB2
ˆ γ G . (20)  

Here, 

€ 

φG  is the electrostatic potential of GAMs, and 

€ 

ˆ γ G  is the damping rate of GAM by the 
Landau damping which is normalized by 

€ 

vT /R . The heating efficiency of GAMs is 
proportional to the inverse square of the strength of magnetic field and the inverse of the 
plasma major radius, and it strongly depends on the safety factor and the electron temperature 
normalized to the ion temperature. It is proportional to the square of the amplitude and the 
radial wavenumber of GAMs, respectively. Since the heating efficiency of GAMs is 
determined by the square of GAMs amplitude, the nonlinear dynamics of GAMs is important. 
The order of magnitude estimate for the impacts of GAM channeling is discussed here, taking 
an example of LHD experiments. The beam driven GAMs are observed in LHD plasma 
which is sustained by NBI heating of 

€ 

PNBI = 400 [kW/m-3]. The observed GAMs have a 
voltage around 

€ 

φG =1 [kV] [6]. The plasma parameters are R=3.9 [m], a=0.65 [m], 

€ 

Te = Ti = 3[keV], 

€ 

ni =1.5 ×1019 [m-3], B=3[T]. The radial electric field of GAMs is estimated 
as 

€ 

Er = qr φG ~ 10
3 qr  [V/m]. The ratio between ion heating effect by GAMs and electron 

heating effect by NBI can be evaluated as 

€ 

PG→ i /PNBI~0.1, where we assume 

€ 

qr ~ 10 [m-1]. 
The bulk ion heating by GAMs has a considerable effect on ion energy in real plasmas. 
 
 
5. Summary 
 We investigate the nonlinear dynamics of ZFs driven by GAMs, where GAMs are driven by 
turbulence. Based on the fluid model with the introduction of Landau damping and energetic 
particle effect for GAMs, and of ion-ion collisional damping for ZFs, the coupling equations 
among turbulence, GAMs and ZFs are derived. ZFs driven by GAMs are generated 
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effectively at lower safety factor. Substantial ZFs can be induced by radially-counter-
propagating GAMs. The pulse response of ZFs with NBI modulation is investigated. When 
the onset of pulse of GAM and the phase of the modulation corresponds, the amplitude of ZF 
driven by GAMs becomes larger. This study contributes to the search for the improved 
confinement of plasmas. Another impact of GAMs on confined plasmas is also discussed. 
GAMs can affect the partition of injection power between main ions and electrons. These 
analyses illuminate the importance of nonlinear dynamics of ZFs, GAMs and turbulence. 
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