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Effects of 3D Magnetic Perturbations on Toroidal Plasmas

J.D. Callen, University of Wisconsin, Madison, WI 53706-1609 USA, callen@engr.wisc.edu

Abstract. Small 3D magnetic perturbations have many interesting and useful effects on tokamak
and quasi-symmetric stellarator plasmas. Plasma transport equations that include these effects, most
notably on diamagnetic-level toroidal plasma rotation, have recently been developed. The 3D magnetic
perturbations and their plasma effects can be classified according to their toroidal mode number n. Low n
non-resonant fields induce a neoclassical toroidal viscosity (NTV) that damps toroidal rotation throughout
the plasma toward an offset flow in the counter-current direction; recent tokamak experiments have
generally confirmed and exploited these predictions by applying external low n non-resonant magnetic
perturbations. Medium n toroidal field ripple produces similar effects plus possible ripple trapping NTV
effects and direct ion losses in the edge. A low n (e.g., n= 1) resonant field is mostly shielded by the
toroidally rotating plasma at and inside the resonant (rational) surface; if it is large enough it can stop
plasma rotation at the rational surface, facilitate magnetic reconnection there and lead to a growing
locked mode, which often causes a plasma disruption. Externally applied 3D magnetic perturbations
usually have many components; in the plasma their lowest n (e.g., n=1) externally resonant components
can be amplified by kink-type plasma responses, particularly at high β. Low n plasma instabilities (e.g.,
NTMs, RWMs) cause additional 3D magnetic perturbations in tokamak plasmas; tearing modes can
bifurcate the topology and form magnetic islands. Finally, multiple resonant magnetic perturbations
(RMPs) can, if not shielded by plasma flow effects, cause local magnetic stochasticity and influence H-
mode edge pedestal transport. These various effects of 3D magnetic perturbations can be used to directly
modify plasma toroidal rotation and indirectly plasma transport, e.g., for reducing anomalous transport
and ELM control. The present understanding and modeling of these various effects, and key open issues
for development of a predictive capability of them for ITER are discussed.

1 Magnetic Field Representation

Tokamaks are two-dimensional (2D) axisymmetric magnetic systems to lowest order. But
small 3D perturbations δB arise from externally applied fields and plasma instabilities. The B
field magnitude in near-axisymmetric tokamaks can be written using the poloidal magnetic flux
ψ (radial coordinate), straight-field-line poloidal angle θ and axisymmetric toroidal angle ζ as

|B| = |B0(ψ, θ)|︸ ︷︷ ︸
2D axisymm.

+
∑
n,m

δBn(ψ,m) cos (mθ − nζ − ϕm,n)︸ ︷︷ ︸
low m,n resonant, non-resonant

+ δBN (ψ, θ) cos(Nζ)︸ ︷︷ ︸
medium n, ripple

+ · · · . (1)

The 3D magnetic perturbations and their effects on toroidal plasmas can be classified by their
toroidal mode number n: low n (1 to 5) resonant (with magnetic field line pitch, q=m/n) and
non-resonant fields, medium n (mainly due to ripple from N toroidal field coils) and high n (· · · ,
due to microturbulence). Fields in quasi-symmetric stellarators can be represented similarly.
This theory-based overview paper concentrates on low and medium n perturbations. Plasma
flows are discussed first. Then, key 3D theory elements and finally combined effects are discussed.

2 Plasma Toroidal Rotation And Transport Equations

Key equations: Plasma transport equations for density, temperature and flows in tokamak
plasmas that include 3D magnetic perturbation effects, including on diamagnetic-level plasma
flows, have recently been developed [1]. These developments build on the fluid moment approach
to stellarator plasma transport in which flows within a magnetic surface are obtained first [2],
before the self-consistent radial electric field and net cross-field “radial” transport fluxes are
determined. But they go one step further by assuming the 3D magnetic perturbations are
gyroradius small compared to the axisymmetric (or stellarator quasi-symmetric) magnetic field.
Then, various constraints on plasma flows are obtained on successive time scales [1]: 1) Radial
ion force balance is enforced by compressional Alfvén waves on the µs time scale, which yields

Vi ·∇ζ = −
(
∂Φ0

∂ψ
+

1
niqi

∂pi
∂ψ

)
+ qVi ·∇θ =⇒ Vt '

Eρ
Bp
− 1
niqiBp

dpi
dρ

+
Bt
Bp

Vp. (2)
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Thus, on the transport time scale the plasma toroidal flow Vt is a combination of E×B, ion dia-
magnetic and poloidal ion flows. Here, Bp, Bt are the axisymmetric poloidal, toroidal magnetic
field components and ρ (units of m) is a toroidal-flux-based radial coordinate. 2) The poloidal
flow Vp is damped to a primarily ion-temperature-gradient diamagnetic-type flow on the ion colli-
sion (∼ ms) time scale plus possible microturbulence-induced effects specified in [1b,1c]. Finally,
3) toroidal torque densities Tζ≡eζ·Force (eζ ≡R2∇ζ=R êζ is covariant toroidal angular vec-

tor) induce radial particle fluxes Γ·∇ψ = −Tζ/qs . Setting their summed radial current to zero
(for ambipolar transport) yields the transport equation for plasma toroidal angular momentum

density Lt ≡
∑

ionsmini〈R2Vi ·∇ζ〉 which, neglecting magnetic flux transients, is [1]:

∂Lt
∂t︸︷︷︸

inertia

' − 〈eζ·∇·
↔̄
π

3D

i‖ 〉︸ ︷︷ ︸
NTV from δB

+ 〈eζ· δJ×δB〉︸ ︷︷ ︸
resonant FEs

− 〈eζ·∇·
↔̄
π i⊥〉︸ ︷︷ ︸

cl, neo, paleo

− 1
V ′

∂

∂ρ

(
V ′Πiρζ

)
︸ ︷︷ ︸
Reynolds stress

+ 〈eζ ·
∑

sS̄sm〉︸ ︷︷ ︸
mom. sources

. (3)

The Lt solution of this equation gives the flux surface average (FSA) total plasma toroidal rota-

tion frequency Ωt(ρ, t) ≡ 〈V·∇ζ〉 = Lt/(mini〈R2〉) ∼ Vt/R . Using (2), this Ωt determines the

radial electric field that yields ambipolar radial density transport [1]: Eρ ≡ − |∇ρ| ∂Φ0/∂ρ '
|∇ρ| [ Ωt ψ

′ + (1/ni0qi) dpi/dρ− (cp/qi) dTi/dρ] . Here, ψ′ ≡ dψ/dρ ' BpR, cp ≡ ki ∼ 1.17 in
√
ε� 1 neoclassical theory, V ′ ≡ ∂V/∂ρ ∼ % and V is the volume of the ρ ≡

√
ψt/πBt0 surface.

Plasma torques: Terms on the right of (3) represent [1] (in order of appearance) toroidal
torque effects due to: non-resonant low and medium n 3D fields that induce neoclassical toroidal
viscosity (NTV); low n resonant “field errors” (FEs); collision-induced classical, neoclassical
and paleoclassical perpendicular viscosities; Reynolds (and Maxwell [1]) stress due to high n
microturbulence (see [3]); and “external” toroidal momentum inputs. Relevant Lt boundary
conditions and their effects, and integral forms of (3) are discussed in [1d]. In this comprehensive
plasma toroidal rotation equation, radial particle fluxes induced by plasma toroidal torques are
not individually ambipolar; rather, only their sum is. The requirement of ambipolar transport
determines the plasma toroidal rotation (radial electric field). Since in tokamaks the dominant
torques are on the ion species, the radial electric field is usually determined mainly by ion particle
fluxes; this is called the “ion root” [of

∑
s qsΓs·∇ψ = f(Eρ)→ 0] in stellarator transport theory.

The net radial particle transport flux [1b] is the sum of the intrinsically ambipolar collision-
induced particle fluxes (classical plus neoclassical and paleoclassical) and non-ambipolar fluxes
evaluated at the ambipolarity-enforcing radial electric field Eρ (toroidal rotation frequency Ωt).
The radial energy transport fluxes induced by the low and medium n 3D field perturbations
tend to be negligible since they are order %2

∗ (Bt/Bp)2 smaller [1] than the usual axisymmetric
collision- and microturbulence-induced energy transport fluxes (here, %∗ ≡ %i/a� 1).

3 Low n Non-resonant δB Torques (applied by external coils)

Collision-induced toroidal torque: Using (2), the neoclassical toroidal viscous (NTV)
torque induced by a single n non-resonant 3D perturbation can be written in the generic form

−〈eζ·∇·
↔̄
π

3D

i‖ 〉 ' −mini µ‖

(
δBn
B0

)2

〈R2〉 (Ωt − Ω∗) , Ω∗'
cp+ct
qi

dTi
dψp
∼ 1
qiRBp

dTi
dρ

< 0. (4)

This ion NTV torque damps toroidal rotation throughout the plasma toward an “offset” toroidal
plasma rotation frequency Ω∗, which is in the counter-current direction, at a rate µ‖(δBn/B0)2.
All the seminal calculations of 3D-induced radial particle fluxes and NTV torques induced by
δBn in many possible asymptotic collisionality regimes have been made by Shaing [4].

Radial fluxes, NTV: The non-ambipolar radial particle fluxes and resultant NTV torques
can be understood in terms of the collisional effects on radial drift motions induced by non-
resonant 3D fields [1a,4f]. Phenomenologically, the particle diffusion coefficient can be written
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as D ∼ f∆ (∆ρ)2/∆t in which f∆ is the velocity space fraction of particles taking random radial
steps ∆ρ at a rate 1/∆t. The NTV damping frequency obtained from qi〈Γ·∇ψ〉 = −Tζ =

〈eζ·∇·
↔
π

3D

‖ 〉 is µ‖(δBn/B0)2 ∼ (Di/%
2
i ) (Bp/B0)2 = (Di/v

2
d0) (v2

T i/R
2
0) in which %i ≡ vT i/ωci

is the ion gyroradius, ε ≡ r/R0 � 1 is the inverse aspect ratio and vd0 ≡ 2Ti/(qiBpR0) =
(B0/Bp)vT i(%i/R0) with vT i ≡

√
2Ti/mi is the reference (2D) gradient-B ion radial drift velocity

[1a,4] due to the toroidal curvature (' 1/R0) of the tokamak.
Scalings: Approximate dimensional forms of relevant ion drift orbit effects and the induced

ion diffusivitiesDi, NTV damping frequencies µ‖ and 3D offset frequency coefficients ct are shown
in Table 1. In 2D axisymmetric theory the centers of both electron and ion banana drift orbits
remain on a flux surface. Thus, 2D neoclassical transport is ambipolar and causes no NTV torque
[1b]. (In the fluid approach the 2D torque Tζ vanishes because there is no variation of |B| with
ζ to impede flow in the toroidal direction.) The 3D fields introduce radial drifts of the centers

of trapped-ion banana orbits (“banana-drifts” [4a]) with drift velocity v3D
d ≡ n (δBn/B0) vd0.

Only trapped particles are involved in banana-drift effects. In the key 1/ν regime in Table 1
the radial excursions of the banana centers are limited by collisions. In the key

√
ν regime they

are limited by boundary layer effects on barely trapped particles. (The
√
ν regime includes and

supersedes [4c] the originally calculated ν regime [4b].) In Table 1 ωE ≡ ∂Φ0/∂ψ ' −Eρ/RBp
is the E×B-induced toroidal precession drift frequency [4b]. (Order unity logarithmic factors
are neglected here and in Fig. 1.) When ωE → 0 radial “superbanana plateau” (sbp) drift
excursions are limited by the reference (2D) gradient-B drift frequency ωd0 ≡ vd0/R0. Ripple-
trapping effects [4h] are discussed in the next section. Finally, 3D fields produce transit (and
bounce, drift) resonances and induce plateau-like diffusion [4i], which is highlighted in [4j] and
comprehensively evaluated in [4k]. This effect is analogous to transit-time-magnetic-pumping
(TTMP) effects by RF waves; Eq. (40) in [4i] provides a simple estimate for rippled tokamaks.

Collisionality regimes: The applicable νi ranges for the typically most important 1/ν,√
ν and superbanana-plateau 3D trapped-ion transport are illustrated schematically in Fig. 1.

Also shown are those for the standard 2D axisymmetric (banana, plateau and Pfirsch-Schlüter),
3D plateau (TTMP) and very low collisionality 3D superbanana [4f] transport. Since the 3D
contributions from trapped (1/ν,

√
ν and sbp) and transit-resonant particles (TTMP) arise from

different regions of velocity space, at a given ion collision frequency their effects are additive.

Table 1: Particle diffusivities and NTV damping rates induced by ion drift orbit effects.

Regime f∆ ∆ρ
1

∆t
Di ∼ f∆

(∆ρ)2

∆t
µ‖ ∼ Di

n2v2
Ti/R

2
0

(v3D
d )2

ct

2D axisymmetric
banana

√
ε ∆ρb ∼

q %i√
ε

νi

ε
νi
q2%2

i

ε3/2
0 −

3D trapped particles [νi < ε3/2ωti]
1
νi
<

1
ε |n|ωE

√
ε v3D

d ∆t
νi

ε

√
ε

(v3D
d )2

νi/ε

√
ε
n2v2

Ti/R
2
0

νi/ε
2.4√

νi

ε |nωE |
< 1

√
ε

(
νi/ε

|nωE |

)1/2
v3D

d

|nωE |
|nωE |

√
νi

|nωE |
(v3D

d )2

|nωE |

√
νi

|nωE |
n2v2

Ti/R
2
0

|nωE |
0.34

ωE → 0 (sbp)
√
ε

(
νi/ε

|n|ωd0

)1/3

v3D
d ∆t

(
νin

2ω2
d0

ε

)1/3 √
ε

(v3D
d )2

|n|ωd0

√
ε
n2 v2

Ti/R
2
0

|n|ωd0
0.0

ripple trapped
(
δBN

B0

)1/2
Bp

B0
vd0∆t

νi

δBN/B0

(
δBN

B0

)3/2B2
p

B2
0

v2
d0

νi

(B2
p/B

2
0)(v2

Ti/R
2
0)

(δBN/B0)1/2 νi
3.5

3D transit-resonant particles [ωd0(δBn/B0)3/2 < νi < ωti, TTMP]

plateau
(
νiR0

|n|vTi

)1/3

v3D
d ∆t

(
νin

2v2
Ti

R2
0

)1/3 (v3D
d )2

|n|vTi/R0
|n| (vTi/R0) − 0.5
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Figure 1: Ion collisionality regimes for 2D and 3D contributions to particle diffusivity Di ∝
NTV damping frequency µ‖. Transitions occur at key frequencies: ion transit ωti ≡ vT i/R0q,
E×B-induced ε |nωE |, superbanana-plateau radial drift ωsbp ≡ ε |n|ωd0 and superbanana ωsb ≡
ε−1/2(δBn/B0)3/2(|n|ωd0). The Di and µ‖ become large when ωE → 0 (short dashes curve).

Approximate multi-collisionality trapped-particle NTV torque formulas that include the radial
force balance constraint and poloidal flow effects have recently been proposed [4e,f,g]. If ripple-
trapping occurs, as discussed in the next section, its effects [4h] should also be added.

Initial experimental tests: Reduction of Ωt induced by externally imposed non-resonant
(m/n= 1/3) 3D fields was first observed experimentally on DIII-D [5a] where it was compared
to an adaptation of TTMP theory. Magnetic braking induced by TTMP effects of field errors
was explored for JET plasmas [5b]. Reduction of the NTV damping rate with the degree of
quasi-helical symmetry has also been demonstrated on HSX [5c]. Figures 2 and 3 show the first
detailed comparisons of NTV theory (in the 1/ν regime) with toroidal torque data from NSTX
[5d]; this pioneering paper introduced the “neoclassical toroidal viscosity” (NTV) terminology.
In retrospect, the good agreement shown in Figs. 2, 3 is a bit fortuitous — because later theory
developments showed these NSTX plasmas were likely in the

√
ν regime where the NTV torque

is somewhat smaller, but the competing “Lagrangian” effect [8c] of radial field line motion,
which increases the |B| variations along field lines, was not included. Recent estimates of n=1
NTV effects in JET [5e] found them to be too small; however the resonant field amplification
(RFA) effects (see Section 6) found to be important in NSTX (see Fig. 3) were not included.

Experimental tests of offset: Damping of Ωt by NTV to the offset frequency Ω∗ in (4),
which was first highlighted in [7f], has been convincingly demonstrated in DIII-D using a n=3
non-resonant magnetic field (NMRF) [5f-h], as shown in Fig. 4. This paper introduced the

Fig. 3
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Figure 2: NSTX experimental test [5d] of the
spatial profile and magnitude of NTV-induced
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Figure 5: DIII-D experiments validated
[5h] NTV peak caused by µ‖(νi, ωE) occurs
where ωE ' 0 at which Ωt ' − 2 krad/s.

“offset” rotation frequency terminology. The offset frequency Ω∗ defined at the end of (4) is
caused by superthermal ions diffusing radially more rapidly than thermal ions. Thus, a reduced
toroidal rotation frequency Ωt is required to obtain the same net torque and hence ambipolar
radial particle transport compared to the case where Ti is spatially constant. Alternatively, from
(2) the offset Ω∗ represents the decrease in Eρ needed to hold back more thermal ions to obtain
ambipolar transport when dTi/dρ < 0. In addition, rotating MHD-type modes in MAST [5i]
have been shown to induce torque and offset frequency effects consistent with NTV theory.

Peak NTV: The Eρ-induced drift frequency ωE = −(1/niqi)(dpi/dψ) + (cp/qi)dTi/dψ − Ωt

obtained from (2) varies with Ωt. Thus, the NTV damping frequency µ‖(νi, ωE) and torque vary
nonlinearly with Ωt (ωE). They peak where ωE → 0, as indicated by the dashed curve in Fig. 1.
This key effect has been demonstrated recently on DIII-D [5j], as shown in Fig. 5.

Status: Recent tokamak experiments have exploited NTV effects by applying δBn/B0 ∼
10−3 low n non-resonant external magnetic perturbations to produce new regimes of QH-mode
operation [5k] and reduce resonant field error effects [5l]. The composite of the various experi-
mental tests and uses of the NTV torque validate to a large degree the neoclassical-based theory
of the toroidal torque induced by the effects of externally applied low n non-resonant 3D fields.

4 Medium n Non-resonant δB Torques (toroidal field ripple)

Theoretical effects: The magnetic field ripple caused by the finite number N of toroidal
field coils (typically N = 18–32, with δBN/B0 <∼ 10−2) induces various types of 3D NTV and
direct ion loss effects, which are additive. The ripple-induced 3D trapped-particle contributions
in Table 1 are usually in the

√
ν regime because n→N is large so typically νi < ε |NωE |. The

3D transit-resonance (TTMP) effects [4i,j,k] can cause the dominant ripple effect. In addition,
low collisionality ions with νi < (δBN/B0)1/2Nωti can be trapped in ripples (if ε | sin θ| < Nqδ
[4h]) causing ions to drift radially inducing a radial ion particle flux and hence NTV torque
that scales as (δBn/B0)3/2 [1a,4h], as indicated in the “ripple trapped” row of Table 1. Finally,
near the plasma edge superthermal ions or NBI-produced fast ions can be ripple trapped or
have up-down asymmetric banana drift orbits and drift out of the plasma. This “direct” FSA
radial ion loss current 〈Jdl ·∇ψp〉 induces a radial “return current” in the plasma to preserve
quasineutrality [1b]. When this radially inward (negative) plasma return current is crossed with
Bp, it induces a toroidal torque on the edge plasma in the counter-current direction. This effect
is represented in (3) by a momentum sink (see Section V of [1b]) 〈eζ · S̄m〉 = −〈Jdl ·∇ψp〉. Thus,
ripple-induced direct loss and NTV effects both decrease the plasma toroidal rotation frequency
Ωt; NTV effects damp it toward the offset rotation frequency Ω∗ in the counter-current direction.

Experimental effects: A significant reduction in plasma toroidal rotation induced by
ripple effects was first observed in ISX-B where adjacent toroidal field coils were de-energized



2010 IAEA FEC Paper OV/4-3 UW-CPTC 10-8R, October 28, 2010 6

Figure 6: Toroidal plasma flow decreases as
field ripple in JT-60U is increased from 1%
(with FSTs) to 2% without (w/o) FSTs [6c].
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Figure 7: Toroidal plasma rotation decreases
monotonically with increasing field ripple (% #s
at right of 4th panel) in edge of JET [6e].

to produce an N = 9 coil system with an edge ripple of δ ≡ δBN/B0 ∼ 10% [6a]. Experiments
in JT-60U L-mode plasmas with and without ferritic steel tiles (FSTs) to reduce the N = 18
field ripple (edge δ was reduced from 2% to 1%) observed a decrease in plasma toroidal flow
toward the counter-current direction for the higher ripple case [6b], as shown in Fig. 6. This
result agrees with theoretical modeling of the edge ripple-induced ion direct loss current effect
[6c]. Also, the decrease in edge toroidal flow in JT-60U increases monotonically with increasing
perpendicular NBI power which increases the edge direct ion loss current [6b]. Recently, variable-
ripple experiments have been performed by changing the current in adjacent (even/odd) toroidal
field coils. The edge ripple in the N=24 JET configuration [6d,e,f] was varied from 0.08% to 1%
and from 0.8% to 7% in Tore Supra experiments [6g]. The edge Ωt decreased monotonically as
ripple was increased [6d-g], as shown for JET in Fig. 7. All other plasma and pedestal profiles in
JET were essentially unchanged as long as a ripple-induced “density pump-out” at the edge was
compensated for by increased gas puffing to keep the overall plasma density constant [6e,h]. The
differing ripple magnitudes between the JT-60U and full 24 coil JET experiments had previously
been identified [6f] as the cause of slightly smaller pedestal pressures in JT-60U. Finally, analysis
of the decrease in the edge Ωt toward the counter-current direction in JT-60U has been shown
[6i] to be proportional to dTi/dρ, which may be caused by the NTV Ω∗ offset frequency.

Status: Decreases in edge Ωt toward the counter-current direction caused by ripple-induced
direct ion losses are in reasonable agreement with predictions [6c,j]. Modeling of ripple effects has
concentrated on effects of the FSA direct ion loss current 〈Jdl ·∇ψp〉 and used phenomenological-
type models [4a] for banana-drift effects [6c,6j] without taking account of self-consistent radial
electric field effects (i.e., the Ωt or ωE dependence of the ripple-induced non-ambipolar ion ra-
dial particle fluxes). Modeling the full Ωt(ρ) profile in rippled tokamaks when both NTV (from
trapped and transit-resonant particles [4]) and edge ion direct loss effects are present requires
self-consistent calculations using (3) and (4). Particularly important would be a modeling con-
firmation of the offset frequency Ω∗ (< 0) effect in rippled tokamaks. Ripple-type effects caused
by Test Blanket Modules (TBMs) being proposed for ITER are discussed in the final section.

5 Low n Resonant δB Torques (mode locking from field errors)

Locking physics: Field errors (FEs) often introduce low n resonant 3D magnetic pertur-
bations; they can also be externally applied. Such 3D fields can induce “locked” (to the wall)
MHD modes [7a,b] and lead to plasma disruptions. In ideal MHD an externally imposed 3D
field induces a non-resonant δB response throughout the plasma but exerts no toroidal torque
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on it [7c] — because there is no dissipation in the ideal MHD model. Dissipative nonideal (e.g.,
resistive) effects allow a resonant 3D field to induce a nonzero δBρm/n in response to the induced
ideal MHD delta-function “shielding current” δJ‖m/n within a thin “singular” layer of width δs
around a low order rational surface defined by q(ρm/n)=m/n [7c,d]. Nonideal effects produce a
local Maxwell-stress-induced FSA toroidal torque density on the plasma for a cylindrical model
in the form (representing the thin resistive singular layer at ρm/n with a δ-function)

〈eζ · δJ‖m/n×δBρm/n〉 ' −mini (4nc2
A)

(
δBvac

ρm/n

B0

)2 [
(−ωτs)

(−∆′)2 + (−ωτs)2

]
V δ(ρ− ρm/n)

V ′
. (5)

Here, cA ≡ B0/
√
µ0mini is the Alfvén frequency, δBvac

ρ m/n ≡ [δB ·∇ρ]ρm/n
is the radial compo-

nent of the vacuum δB at ρm/n, ω ≡ k ·Vi = −nΩt + m〈Vi ·∇θ〉 = n [ωE + (1/niqi)(dpi/dψ)],
τs = δsρm/n/(η/µ0) ∼ 102–10−3 s is the resistivity-induced singular-layer diffusion time, and
∆′ is the tearing mode instability index (< 0 for stability). This radially localized torque
density tries to stop plasma toroidal rotation at the rational surface induced by the momen-
tum source 〈eζ ·

∑
s Ssm〉. However, radial diffusion of the toroidal flow by the collision- and

microturbulence-induced perpendicular viscous diffusivity χζi limits the change in Ωt in the
vicinity of the singular layer. The ω (and hence Ωt-, ωE-dependent) factor in square brack-
ets in (5) represents the nonideal (resistive) singular layer effects; its ω/(ω2 + ω2

0) dependence
causes the plasma response to be analogous to induction motor responses to a rotating magnetic
field [7c,d]. For |ωτs| � 1 plasma toroidal rotation and χζi inhibit penetration of δBρm/n into the
singular layer by producing an ideal MHD-type “superconducting plasma” shielding response for
ρ ≤ ρm/n [7b-d]; i.e., in a cylindrical model it causes δBvac

ρm/n to vanish for ρ ≤ ρm/n. However,
when δBvac

ρm/n is large enough to reduce |ωτs| to about −∆′ ∼ 2m, the “penetration threshold”
is exceeded (e.g., for δBvac

ρ 2/1/B0 >∼ 10−4 [7]), Ωt(ρm/n) is no longer restrained by χζi effects and
plasma rotation no longer “shields” out the resonant torque. Then, the solution of (3) bifurcates
(in a few ms) to a state where the toroidal rotation vanishes at the rational surface, magnetic
reconnection occurs at ρm/n and a growing m/n locked mode magnetic island is induced, which
often leads to a plasma disruption.

Recent theory developments: More physically relevant (mainly Visco-Resistive regime)
two-fluid singular layer effects have recently been developed [7e]. In addition, NTV adds a
global torque effect that attempts to keep the plasma rotating at the rate Ω∗ [7f]; it amplifies the
viscosity-induced plasma rotation shielding effects by a factor Γs ≡ [ρ2

m/nµ‖(δB
vac
ρm/n/B0)2/χζi]1/2

when it exceeds unity. Finally, and perhaps most critically for mode-locking thresholds at fusion-
relevant β values, resonant field amplification (RFA) mainly due to weakly damped kink-type
n=1 resonant plasma responses [8] are being explored; they are discussed in the next section.

Recent experimental studies, status: Field error locking results from many tokamaks are
summarized empirically in [7g], as shown in Fig. 8. The field error mode-locking threshold scales
primarily about linearly with plasma density in ohmic-level plasmas. The recent NTV-influenced
mode-locking theory [7f] agrees most closely with this scaling. However, detailed quantitative
comparisons with theory require knowledge of the magnitude and scaling of the perpendicular
ion momentum diffusivity χζi and remain to be made. Recent detailed experimental studies
of field error mode-locking thresholds obtained with a mix of intrinsic field errors and external
fields applied to compensate them found plasma response effects [5c,e;8a] must be included
[7h-k]; i.e., the torque in (5) depends on the plasma-response resonant δBplasma

ρm/n instead of just
the vacuum field resonant field component there. The resonant field amplification (RFA) scales
approximately linearly with β at high β [7i,j]; see the example in Fig. 9. Hence “dynamic” field
error compensation is usually needed for optimum error field control as β increases [7k]. Also,
non-resonant NTV is being used to control and compensate for field error effects on Ωt [5j;7k].
Finally, phased ECCD and NTV have been used to get locked modes to “commit suicide” and
not lead to plasma disruptions [7l].
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Figure 8: Relative threshold 2/1 magnetic
perturbation (∝ neR0 for solid points, q95 '
3.2) above which locked modes occur [7g].

plasma perturbation is modeled using only ideal MHD,
which does not provide any free parameters that directly af-
fect the amplitude of the plasma response. Since the influ-
ence of the background plasma rotation on the RWM stabil-
ity is neglected, we focus here only on equilibria that are
below the no-wall limit. This is reasonable since above the
stability threshold, ideal MHD predicts an unstable RWM,
which is not experimentally observed in these discharges.

Since the MARS-F code solves for the plasma response
based on fixed boundary equilibria, multiple equilibria were
computed for each experimental reconstruction by retaining
between 99.0 and 99.7% of the total poloidal flux. These
equilibria were used as input to MARS-F to calculate the
plasma perturbation, and to estimate the error introduced by
the flux truncation. At !N=1.7, both the magnitude and tor-
oidal phase of the computed n=1 perturbed field at various
sensor locations are in good agreement !within 20%" with
the measured plasma response, Fig. 3, which is obtained by
subtracting the measured coil-sensor coupling from the total
perturbed field. The measured toroidal phase is quoted with
respect to the applied radial field at the midplane, and shows
that "Br

plas is in phase with the applied field, while "Bp
plas is

shifted by +90° in the direction of the plasma current. The
phases of the upper and lower radial magnetic probes indi-
cate the helical structure of the perturbation. A systematic
phase shift of the measurements with respect to the predic-
tions in the direction of the plasma rotation is likely caused
by the interaction of the mode with the plasma rotation.
These magnetic measurements show that ideal MHD is ad-
equate to describe the external plasma response for values of
!N sufficiently far from !N

NW.
At higher pressures, MARS-F tends to overestimate the

perturbed field. In Fig. 4, the measured and modeled magni-
tude and phase of "Bp

plas are compared as a function of
!N /!N

NW, where !N
NW is calculated for each equilibrium. In

the range of 75%–100% of !N
NW, the computed "Bp

plas exceeds
the observed magnitude by a factor of 1.5–3, and the phase
shifts in the negative Ip direction. The poor agreement here
indicates that nonideal effects are important even in this re-
gime. Above !N

NW, the observed phase of "Bp
plas shifts in the

direction of Ip by 50° at !N=2.3, which is inconsistent with
ideal MHD theory. Although there is an apparent jump in the
observed phase near the no-wall limit for this data set, a
larger database of plasma response measurements shows a
smooth transition through the stability threshold.

The magnitude of the computed "Bplas depends on the
stability of the plasma, which is determined in part by the
details of the current profile. This is demonstrated using
equilibria obtained by solving the Grad–Shafranov equation
independent of the experimental constraints using a scalar
multiplier to vary the pressure profile determined with EFIT

while keeping the current profile fixed for the lowest and
highest beta equilibria shown in Fig. 1!b". The solid and
dashed lines in Fig. 4 mark the computed "Bp

plas based on the
low and high beta discharge, which have a plasma internal
inductance of 0.85 and 0.79, respectively. For all values of
!N, the computed "Bp

plas is larger for the plasma with a lower
internal inductance. However, the "Bp

plas for both sets of dis-
charges are equal when considered as a function of !N /!N

NW.
This indicates that the current profile influences the plasma
response, but only insofar as it affects the stability limit,
which is proportional to the internal inductance.22 However,
the discrepancy between the measurements and the MHD
calculations near the no-wall limit cannot be explained by a
variation of the experimentally determined current profile
within the known uncertainties of the bootstrap current cal-
culation.

The plasma response also depends on the safety factor
profile and the structure of "Bext through a resonance with
the unstable kink eigenmode, which has no pitch resonant

FIG. 3. !a" Magnitude and !b" toroidal phase of "Bplas at !N=1.7 from
various magnetic diagnostics. Subscripts on "B refer to poloidal !p", or
radial !r" field probes, the probe location either internal !no label" or external
!e" to the vacuum vessel, and the probe elevation either at !no label", above
!up" or below !low" the midplane. Solid lines mark perfect agreement be-
tween measured and modeled data. The error bars for the calculated quan-
tities are based on a variation of the total poloidal flux between 99.0% and
99.7% of the experimentally determined flux.

FIG. 4. !Color online" Comparison of the measured !square" and computed
!diamond" !a" magnitude and !b" toroidal phase of "Bp

plas at the midplane as
a function of !N /!N

NW. Solid and dashed lines mark the computed "Bp
plas for

scaled equilibria based on discharges with !N=1.14 and !N=1.95.

030701-3 Validation of the linear ideal MHD model… Phys. Plasmas 17, 030701 !2010"
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Figure 9: Magnitude of n = 1 3D resonant
field on DIII-D outer midplane increases ∝ β
[7j]; ideal MHD MARS-F [8b] results shown.

6 Resonant Field Amplification (RFA) Plasma Responses To δB

Multiple Components: Externally applied 3D magnetic perturbations usually have many
m,n Fourier components whose NTV, ripple-trapping and resonant FE effects should be summed
in (3)–(5). However, the δBn(ψ,m) and δBρm/n amplitudes and phases ϕm,n within the plasma
need to be evaluated including plasma responses, i.e., not be vacuum values. Plasma responses
to non-resonant fields are usually modest, except for β values near or above the no-wall limit
[5c,e]. But for n = 1 resonant fields, Figs. 3 and 9 have already indicated the importance of
plasma response effects for obtaining the correct magnitude of NTV and δBρ,m/n effects.

Plasma Responses: Externally applied 3D fields can amplify resonant components of δB
within the plasma if they couple to weakly damped MHD-type global eigenmodes in the plasma
[8a,b]. The “least stable” (smallest damping rate) MHD-type eigenmodes are usually n=1 kink-
type modes that progressively “balloon” on the outboard side of the plasma cross section as β
increases. Non-resonant fields don’t naturally couple to n=1 kink-type eigenmodes; thus, usually
they are not significantly modified by plasma responses [8g]. However, externally applied 3D
fields that can couple to the least stable n = 1 kink-type ideal MHD eigenmodes can amplify the
m/1 magnetic field components within the plasma. Figure 10 shows the various m components
of a representative kink-type n=1 resistive wall mode (RWM) [7j]. Since at the plasma edge the
dominant poloidal mode number m of a global n=1 kink-type eigenmode is m >∼ q >∼ q95, m/1
components of the externally applied δB that couple most strongly [7i,j] are those which are
localized on the outboard midplane (where the straight-field-line θ coordinate values are most
widely spaced) to ∆θ ∼ 2π/m, as indicated in Fig. 11 [8c,d]. That is, n = 1 external field error
(or error compensation) 3D components that cause the largest δBρm/n responses at the m/n =
2/1, 3/1 resonant surfaces within the plasma are those [7i,j] which are field-line-pitch-resonant
with the external or edge n=1 global kink eigenmode components with m >∼ q >∼ q95 there.

Theory and modeling of plasma responses: The ideal MHD magnetic perturbation
induced by a plasma displacement ξ is given by δB = ∇×(ξ×B0); for finite ξ its radial
component δBρ ≡ δB ·∇ρ = (B0 ·∇)(ξ ·∇ρ) must vanish at rational (resonant) surfaces in
the plasma since B0·∇ ∼ i(m − nq)/R0q. In the ideal MHD model when an external 3D
m/n resonant perturbation is applied to a rapidly rotating (i.e., ωτs � 1) plasma, a delta-
function “shielding current” δJ‖m/n must be introduced to satisfy this ideal MHD constraint
[8a]. This generic procedure was used in the calculation of resonant field amplification (RFA)
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corresponding measurement (open diamond) by 40%.

TNBI = 1.8 N m, shown in figure 3, results in a total resonant
field at the q = 2 surface of δB21 ≈ 12 G, figure 9. With an
average electron density of 〈ne〉 = 3.8×1019 m−3 this value for
δB21 exceeds the extrapolation of the linear density dependence
of the error field tolerance in Ohmic plasmas by more than a
factor of two, figure 9. This increase in the error field tolerance
could be attributed to the beneficial effect of NBI torque. The
empirical fit obtained in figure 8 suggests an increase in the
error field tolerance in a plasma with TNBI = 1.8 N m of
approximately 45% over an Ohmically heated plasma with
TNBI = 0, in qualitative agreement with the result in figure 9.

The IPEC calculation also yields a plasma response at the
location of the poloidal field probes at the outboard mid-plane
of δB

plas
p ≈ 10 G, which exceeds the measured value of 7 G

by approximately 40%, figure 9. This comparison represents a
first quantitative test of the IPEC model. The agreement can be

7

Figure 10: Poloidal mode spectrum of
δBρm/1 from nonideal MARS-F [8b] for an
unstable RWM in DIII-D [7i] with q95 ' 5.

j!21j. Although the C coil greatly enhanced the low har-
monics of the external field when the m ! 7, 8, 9 harmon-
ics were reduced, this did not prevent a successful
mitigation of error field effects. For NSTX the dominant
coupling is from the m ! 12, 13, 14 harmonics [Fig. 6(a)].
Indeed, two out of three of these harmonics are reduced
when error field effects are mitigated (M" EFC), but two
out of three are increased when error field effects are
enhanced (M# EFC) by changing the toroidal phase of
the EFC coil currents [Fig. 6(b)]. The large shift of the
dominant poloidal harmonics to higher modes in both
machines is the typical characteristic of the toroidal plasma
response. Note that the test plasmas in both machines were
stable and far from a stability limit.

The description of the external error field in terms of its
Fourier harmonics on the plasma surface offers little in-
sight since such high harmonics in flux coordinates are not
easily controlled in real space. Much better insight is
obtained from the distribution on the plasma surface of
the normal component of the external field that maximizes
the total resonant fields. This distribution can be written as
~bx $ n̂b ! A%!& cos%"& " B%!& sin%"&, where " is the polar
toroidal angle. Figure 7 represents these two functions as a
deviation from a surface that represents the plasma edge
for DIII-D [Fig. 7(a)] and NSTX [Fig. 7(b)]. Figure 7
implies that the asymmetric variation in external field on
the outboard side is most important and should be con-
trolled. The dominant patterns are weakly dependent on
target plasmas and explains the successful cancellation of
error fields by the C coils in DIII-D and EFC coils in
NSTX, despite their limitations in the control of poloidal
distribution.

In summary, a comparison of theory and experiment has
shown that magnetic perturbations that drive islands on low
order rational magnetic surfaces in tokamaks are greatly
modified by the perturbation to the plasma equilibrium.

The plasma is far more sensitive to particular components
(Figs. 5 and 6) or distributions (Fig. 7) of the external
normal field on the plasma boundary, ~bx $ n̂b. The effects
of field errors can be mitigated by controlling the currents
in external coils to null the drive of these distributions, as
verified in locking experiments.
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FIG. 6 (color). (a) The poloidal harmonic coupling spectrum
for j!21j and (b) the Fourier components of the external error
field on the plasma boundary in NSTX for machine intrinsic (M),
the best (M" EFC), and the worst (M# EFC) fields. The dotted
circle in (a) shows the most important harmonics of the external
field.

FIG. 7 (color). The distributions of the external field on the
plasma boundary maximizing the total resonant fields on rational
surfaces, for (a) DIII-D and (b) NSTX. The three-dimensional
distribution can be constructed by ~bx $ n̂b!A%!&cos%"&"B%!&'
sin%"& relative to the plasma boundary (black line).
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Figure 11: Distributions of external 3D fields from
IPEC [8c] that maximize the total resonant fields
on rational surfaces [8d] in a) DIII-D and b) NSTX.

effects in the original NTV explorations on NSTX [5c], as shown in Fig. 3. An innovative,
comprehensive ideal perturbed equilibrium code (IPEC [8c]) has been developed to implement
this procedure using the linear ideal MHD stability DCON code [8e]; it was used to produce the
field error sensitivities shown in Fig. 11. The combination of the shielding current δJ‖m/n and
the (magnetically reconnected) δBplasma

ρ,m/n this sheet current would produce if it were relaxed by
resistivity or other non-ideal MHD effects has been used [8d] to estimate the resonant toroidal
torque 〈eζ · δJ‖m/n×δBρm/n〉 by replacing the δBvac

ρ,m/n in (5) with δBplasma
ρ,m/n and using two-fluid

layer physics [7e,f] for the term in square brackets in (5). This procedure provided encouraging
explanations [8c] for field error correction effects in DIII-D and NSTX; however, while qualitative
trends are captured, subsequent more precise evaluations have been less conclusive [8f]. Figure 9
shows that while the resonant field amplification (RFA) of δBρm/n increases about linearly with
β well below the no-wall limit, the ideal MHD response (calculated in Fig. 9 with MARS-F)
predicts too large a plasma response near (and beyond) the no-wall ideal MHD limit; non-
ideal effects in the singular layer are critical for calculating the rotating plasma response and
achieving stable plasmas above the no-wall limit, as in Fig. 10. The resonant toroidal torque
〈eζ · δJ‖m/n×δBρm/n〉 can be evaluated rigorously [8g] using a linear code such as MARS-F [8b];
when non-ideal MHD effects are included [8g,h], it can calculate self-consistently the singular
layer effects and the reconnected resonant magnetic field δBplasma

ρm/n in the layer. More generally
and comprehensively, nonlinear 3D initial value codes such as M3D [8i], NIMROD [8j] or reduced
MHD codes (BOUT++ [8h] or JOREK [8k]) could calculate the resonant toroidal torque and
also explore the dynamics of the field-error-induced mode locking process. To date these codes
only use resistive MHD or limited two-fluid non-ideal MHD layer physics models; the neoclassical
MHD inertia effects [8l,m] should also be included. Non-resonant 3D field components δBn(ψ,m)
are also generated in response to edge-resonant n = 1 field error components and can cause NTV
“global” toroidal flow damping effects in conjunction with resonant δBplasma

ρm/n effects [7i-k;8f].
Experimental studies, status: The first indications of plasma response effects were seen

in 1992 in the β dependence of the mode locking thresholds in DIII-D [8n]. Resonant field
amplification (RFA) was later observed above the no-wall β limit [8o,p] and shown to be caused
a marginally stable n=1 RWM [8p]. More recently, RWM-induced RFA proportional to β has
been observed along with NTV damping effects in NSTX [8q]; e.g., see Fig. 9. The IPEC studies
[8d,f] of plasma response effects induced by externally applied 3D fields to compensate for field
errors were instrumental in demonstrating the importance of these effects. Understanding of
plasma response effects and correction of both n= 1 and n= 3 intrinsic field errors have led to
sustained high plasma toroidal rotation and record plasma durations free of MHD activity in
NSTX [7k,5j]. The IPEC plasma response studies [8c,d,f] have also provided the impetus for
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studies using MARS-F and nonlinear initial value codes of the plasma response effects including
non-ideal MHD layer physics which are needed for more precise quantification of the non-ideal
effects, particularly near and above the no-wall β limit and for the dynamics of mode-locking.

7 Low n Plasma-Instability-Induced δBs Plus 3D Field Effects

Direct effects: Classical and neoclassical tearing modes (NTMs) and resistive wall modes
(RWMs) cause additional 3D magnetic perturbations in tokamak plasmas. Direct effects of these
MHD-type instabilities are: 1) RWM-induced δBn(ψ,m) perturbations cause non-resonant low n
NTV effects via (4); and 2) Resonant tearing modes bifurcate the magnetic topology and form
magnetic islands within the plasma that complicate and modify NTV effects [4l].

RWMs: Above the no -wall β limit, low n (typically n= 1, 2) ideal MHD-type RWMs are
stabilized if Ωt is large enough for the resistive wall to represent a conducting wall to the rotating
plasma. If the plasma is stationary, magnetic field perturbations penetrate the resistive wall and
RWMs can become unstable. Very recent experiments have demonstrated that the minimum Ωt

is lower than previously thought [9a-c], apparently because of stabilizing kinetic-based effects
[9d] due to thermal and fast ions [9a-c] whose toroidal precessional drifts resonate with the
plasma rotation frequency ω. Even when RWMs are stabilized they increase RFA of the n= 1
δB in the plasma, as indicated in Fig. 9. This in turn increases the NTV damping of Ωt, the
sensitivity to low n field errors and the tendency for NTMs to be excited.

NTMs: For relevant β values the bootstrap current provides a source of free energy for
tearing modes in addition to the usual current gradient source. Tearing modes can be nonlinearly
excited by low m/n (typically 3/2 and 2/1) 3D magnetic perturbations or they can appear
“spontaneously.” The critical issue for both classical (∆′) and neoclassical (bootstrap current)
tearing modes is: what is the threshold βN for given combinations of δBρm/n and toroidal
rotation. Recent experiments indicate that βN thresholds become lower as Ωt is reduced [10a].
When tearing modes occur they modify [4d,l] the radial ion flux and NTV torque in the vicinity
of the island; then NTV effects become more complicated and larger [4l] with possible kinetic
reductions due to reactive resonant Pfirsch-Schlüter current effects on the island width [10b].

8 Multiple Resonant Magnetic Perturbations (RMPs for ELMs)

Use of resonant magnetic perturbations (RMPs) [11a-c] to control ELMs is based on edge mag-
netic stochasticity [11d-f] to reduce pedestal region plasma gradients. Magnetic field stochas-
ticity is caused by island overlap (Chirikov criterion). Key RMP effects are explained by this
criterion, especially the q95 sensitivity and divertor flux patterns. But some effects may not
be: electron heat transport is only slightly changed, but some density “pump-out” often occurs.
Many possible RMP effects are currently being explored: 1) Most importantly, “screening” of
RMP fields by Ωt reduces the width of the stochastic region [11g-o]. 2) Density pump-out due to
RMP-induced E×B cells [11g], large ξ ·∇ρ near the X-point [11i,j], q95 resonances [11o] or turbu-
lence [11p]; 3) Collision lengths comparable to the magnetic decorrelation length in the pedestal
[11b]. 4) Possible “laminar” helical ribbons of magnetic flux in the pedestal, SOL regions [11q].
5) Radial plasma current driven by combination of Eρ and magnetic stochasticity [11r]. And 6)
Kinetic simulation of RMP effects on the pedestal [11s]: screening of RMPs, reduced pedestal
Eρ key for density pump-out, and only untrapped particles contribute to Rechester-Rosenbluth
transport. The precise mechanisms by which RMPs affect the pedestal and hence ELMs are still
being clarified. However, RMP effects are stimulating interesting studies and developing tools
for modifying edge plasma transport (particle, energy and Ωt) and associated edge stability.

9 Effects Of Changes In Toroidal Rotation On Plasma Behavior

As the preceding discussion has indicated, 3D fields can directly affect plasma toroidal rotation
via resonant field errors (for δBρm/n/B0 >∼ 10−4), NTV (for δBn/B0 >∼ 10−3) and toroidal field
ripple (for δBN/B0 >∼ 10−2). Sufficiently large resonant fields in the plasma cause its toroidal
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rotation at the rational surface to lock to the wall [ω(ρm/n) → 0] in a few ms; thereafter the
rest of the Ωt(ρ) profile relaxes slowly via the diffusive radial transport fluxes in (3). The
NTV and ripple effects globally damp Ωt toward an offset frequency Ω∗ < 0. Concomitant
density and heat transport fluxes induced by 3D field effects are of order %2

∗ (Bt/Bp)2 smaller
and hence usually negligible. Thus, theory predicts that 3D fields directly affect Ωt but net
ambipolar density and energy transport only indirectly — mainly through effects of changes in
Ωt(ρ) on microturbulence-induced n and T transport. Experimental results generally confirm
this prediction in that they usually find that 3D fields can significantly affect Ωt via field error,
NTV and ripple effects but usually have much smaller (factors of 3 or greater) effects on n and
T profiles. However, as the preceding section noted, sufficiently large RMPs can induce local
magnetic stochasticity in the edge plasma and thereby increase n and Te transport there.

10 Status, Open Issues (toward predictive capability for ITER)

TBMs: Recent experiments were performed [12] on DIII-D to explore possible effects of
field errors introduced by ITER test blanket modules (TBMs, δ ≡ δB/B0 ∼ 1.2%). The TBM
mock-up was toroidally localized (∆ζ ∼ 2π/24) with δ ∼ 1–3%. Its main effect was braking of Ωt

(∝ Ωt) with increasing δ, causing ∆Ωt/Ωt up to − 50%. Changes in density, confinement and β
were factors of >∼ 3 smaller. Mode locking sensitivity to the n=1 field was greater, especially for
higher β and lower Ωt; but it was easily compensated. A major issue for the previously described
theory is that since the TBM is toroidally localized, it is represented by a very large δBn Fourier
spectrum (±n up to � 2×24 coils). NTV, FE and RFA theory needs to be developed for a
delta-function toroidal field ripple. Nonetheless, 3D effects in the TBM test can be estimated
by summing over all the Fourier δBn coefficients. TBM test results were consistent with [12a]
3D effects theory, modeling. Global NTV Ωt braking was semi-quantitatively predicted [13b]
by IPEC [8c] calculations; the very small TBM-induced n = 1 edge field error is amplified in
the core by edge coupling to a n= 1 kink. The I-coil compensation of the TBM-induced n= 1
field error was also semi-quantitatively matched [13b] by IPEC calculations. Finally, the TBM
mainly affected Ωt, with lesser effects on n, T transport (albeit with a slight density pump-out).

Status: As indicated in the preceding sections, the fundamental physics building blocks of
NTV, ripple, field error and RFA effects of low and medium n 3D fields on plasma toroidal rota-
tion are approaching predictive capabilities for present experiments. Studies of the “combined”
effects of 3D fields on RWMs, NTMs and ELMs via RMPs are more in the developmental stage.
ITER has a N=18 toroidal field system with relatively large ripple, even with FSTs (δ <∼ 0.4%).
Also, smaller toroidal torque densities will be induced in ITER by heating sources (e.g., NBI).
Thus, the ripple-induced NTV toroidal torques will likely be dominant in (3). Hence, ITER
plasmas will likely [5e,6d] rotate toroidally with a frequency near the diamagnetic-level Ω∗ < 0
in (4), i.e., in the counter-current direction. This lower, diamagnetic-level plasma toroidal ro-
tation could produce some undesired effects: 1) greater sensitivity to n = 1 external 3D field
errors and β that could induce locked modes?, 2) smaller radial electric field shear with less
stabilization effects on microturbulence?, 3) reduced βN thresholds for NTMs?, and 4) more
reliance on kinetic ion effects to stabilize RWMs above the no-wall limit? Non-resonant fields in
ITER may be able to use NTV effects to control Ωt(ρ, t). Error field sensitivities in ITER have
been estimated using the IPEC code [13]. Some additional important 3D field effects issues for
ITER are: 1) precise 3D field characteristics required for stabilization or amelioration of ELMs,
2) density “pump-out” caused by FEs, RMPs and ripple, which is not yet understood, 3) RFA
effects on n=1 fields in plasmas including two-fluid layer and low collisionality physics, and 4)
determination of how small field errors must be to avoid locked modes as β is increased — and
an assessment of the degree to which internal, dynamic FE compensation coils might be needed.
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