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Abstract. Recently, Bayesian probability theory has been used at a number of experiments to fold uncertainties 

and interdependencies in the diagnostic data and forward models, together with prior knowledge of the state of 

the plasma, to increase accuracy of inferred physics variables. A new probabilistic framework, MINERVA, based 

on Bayesian graphical models, has been used at JET and W7-AS to yield predictions of internal magnetic 

structure.
 
 A feature of the framework is the Bayesian inversion for poloidal magnetic flux without the need for 

an explicit equilibrium assumption.  We discuss results from a new project to develop Bayesian inversion tools 

that aim to (1) distinguish between competing equilibrium theories, which capture different physics, using the UK 

MAST spherical tokamak; and (2) test the predictions of MHD theory, particularly mode structure, using the 

Australian H-1 Heliac. 

1. Introduction 

Due principally to neutral beam heating, several tokamak experiments now boast plasma 

toroidal rotation speeds that approach the thermal Mach speed and have significant stored 

energy (~25% of total stored energy [1]) residing in the energetic particle population produced 

by charge exchange with thermals.  Despite this, single-fluid thermalised ideal MHD is still 

the foundation of nearly all equilibrium analysis.  Detailed magnetic reconstruction based on 

this treatment ignores the energetic complexity of the plasma, and can result in model-data 

inconsistencies, such as thermal pressure profiles which are inconsistent with the total stored 

kinetic energy of the plasma.  Motivated by the omission of this physics, a range of new 

descriptions have emerged that include thermal rotation and energetic particles [2].  Such 

models are often constrained by quasi-variables user input profiles which are a complicated 

function of the measured data. 

A parallel development has been the improvement in the diversity, accuracy and resolution of 

plasma diagnostics.  Often, interpretation requires a detailed knowledge of the plasma 

equilibrium.  For example, inference of the toroidal current profile jφ(ψ) from line of sight 

measurements of the polarization angle requires a knowledge of the poloidal flux ψ across the 

plasma.  Formally, diagnostic forward functions relate the vector of plasma parameters I to 

the measurement vector D.  For a linear system, such as toroidal current inference, I and D 

are normally related through a response matrix M with additional contributions C, such that D 

= MI+C.  Inference involves inverting this relationship to give plasma parameters I that are 

consistent with the data D.  A widespread technique used is least-square fitting, in which 

prior assumptions are included via a penalty term in the fit.  One limitation of this technique 

is the handling of uncertainties: normally done by selecting different data sets and repeating 

the inference procedure to produce a standard deviation.  This approach assumes the 

underlying probability distribution function of the data to be Gaussian.  A second limitation 

is that uncertainties stemming from parameter interdependency in the data or plasma 

parameters is not made explicit, and so the source of uncertainty in the final inference is not 

resolved.   
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The confluence of increased performance plasmas with improved diagnostic resolution can 

lead to inconsistencies between data and equilibrium model.  An example is filamentation of 

flux surfaces in the Rijhnuizen Tokamak, which was inferred from fluctuations in 

measurements of electron temperature. [3]  Subsequent analysis of the Thomson scattering 

detection chain revealed that with the correct photoelectron statistics and 2D instrument 

profile, similar structures could arise from noise. [4]  Examples such as this, as well as the 

development of new force balance models, suggest inference framework is needed to capture 

uncertainties when forming plasma profiles, and to verify different equilibrium models.  

Such a framework may also offer the possibility to infer otherwise difficult to diagnose 

properties, such as the energetic particle pressure. 

The Bayesian approach to inference in fusion plasmas, developed by multiple authors, [5,6,7] 

involves the specification of an initial prior probability distribution function (pdf), P(I), which 

is then updated by taking into account information that the measurements provide through the 

likelihood pdf P(D|I). The result is the posterior distribution P(I|D) given by Bayes’ formula  

)(/)()|()|( DPIPIDPDIP  .    (1) 

The advantage of the Bayesian approach over traditional inversion techniques is two-fold: (i) 

prior knowledge, including known parameter inter-dependencies is made explicit, and (ii) as 

the formulation is probabilistic, random errors, systematic uncertainties and instrumental bias 

are integral part of the analysis rather than an afterthought.   

We have implemented Bayesian inversion using the MINERVA framework. [8]  Within this 

framework, probabilistic graphical models are used to project the dependence of the posterior 

distribution function on the prior, the data, and the likelihood.  An advantage of this 

approach is that it visualises the complex interdependency between data and model, and thus 

expedites model development.  

In previous work we have reported on development of MINERVA for toroidal current 

tomography in MAST, folding together the vacuum toroidal field, pickup coil data, flux loops, 

and the polarisation angle of emitted light from neutrally excited species during neutral beam 

injection due to the Motional Stark Effect. [9] One valuable piece of information poloidal flux 

inference provides is the safety factor or q profile and its associated uncertainty.  We have 

also corrected the vacuum toroidal field to account for poloidal currents by using the static-

plasma Grad-Shafranov equation as a constraint, folding in measurements of the toroidal 

current density and pressure gradient modelled outside of MINERVA [9,10], and inferring the 

toroidal magnetic flux function.  This work showed that the inclusion of a poloidal current 

model for MAST yields a 5% increase in q on axis, and a 5% decrease in q at the edge.  The 

inclusion of a diamagnetic loop in the MINERVA framework, together with a toroidal flux 

function model, enabled the extraction of poloidal currents internal to MINERVA [11]  

Although promising, these results showed sensitivity to the prior, and the use of iteration 

meant that uncertainties could no longer be generated, and a different approach is now under 

consideration.  In other work, we have shown how Tikhonoff regularisation combined with 

diagnostic cross-validation can be combined to form a new technique, "Tikhonoff Cross-

Validation", used to remove systematic uncertainties. [12] 

In 2010 we have developed Bayesian inference models for electron temperature and pressure 

from Thomson scattering data, as well as the inference of ion temperature and ion thermal 

flow from charge exchange recombination data.  In this work we present first results on the 

modelling and Bayesian inference of electron temperature Te, electron density ne, ion 

temperature Ti and ion flow velocity vi from Thomson Scattering and Charge Exchange 
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recombination data.  For the 22nd IAEA Fusion Energy Conference, we intend to update 

inference for the toroidal magnetic flux function for a flowing plasma, using inferences of ne, 

Te, Ti, and vi from MINERVA.  A wider equilibrium modelling objective of the Bayesian 

project is build a verification framework to test the degree to which the Grad-Shafranov 

equation and more detailed force balance models describe the plasma. 

A second objective of our project is to develop Bayesian inversion for mode structure. The 

low beta H-1 heliac plasma is an ideal environment in which to develop these tools, as the 

plasma exhibits a rich spectrum of fluctuation activity [13], and the equilibrium configuration 

is close to the vacuum field, and so sources of uncertainty in the mode structure and frequency 

are principally derived from the density, temperature, or resistivity profile, not the field 

structure. To this end we report on two developments (1) construction of a forward model for 

the interferometer and imaging Doppler spectroscopy system for H-1 plasmas, and its 

implementation into the MINERVA framework, and (2) implementation of a Bayesian 

inference procedure for mode numbers and frequency using a reduced cylindrical model. [9, 

14] 

2.  Bayesian current tomography in MAST 

Our development of Bayesian inference of the current 

profile on MAST, detailed in Hole et al [9], closely 

follows the seminal work of Svensson and Werner [15]. In 

that work, the plasma was represented as a grid of toroidal 

axis-symmetric current beams, each with rectangular 

cross-section and each beam carrying a uniform current 

density. In the Mega Ampére Spherical Tokamak MAST, 

we have placed these beams so as to fill-out the entire 

plasma volume, including regions outside the last closed 

flux surface up to the vacuum poloidal field coils. The 

magnetic field generated is then a summation of Biot-

Savart's law over current beams.   

Here, we build on the results of Hole et al [10], who 

showed current tomography and q profiles computed using 

MINERVA for discharge #22254.  Figure 1 shows 

poloidal flux surfaces from MAST discharge #24600 at 

280 ms using pickup coils, flux loops and MSE data. 

Discharge #24600 is a deuterium plasma in a double-null 

configuration, which was heated with 3 MW of neutral 

beam heating and a plasma current of Ip = 0.8 MA.  The 

time of 280ms analyzed here is the high-resolution TS 

time closest to the peak . The figure shows a contour plot 

of (R,Z), which is calculated from the maximum of the 

posterior of the distribution of toroidal current beams. Overlaid on the contours are traces of 

the poloidal field coil cross sections and conducting surface cross sections for the MAST 

experiment, as well as the last closed flux surface calculated from the plasma beam model and 

the corresponding EFIT last closed flux surfaces. One outcome of the Bayesian approach is 

generation of pdfs of inferred quantities from which the uncertainty can be inferred.  For 

instance, Fig. 2 shows the corresponding safety factor or q profile and its uncertainty. 

In Bayesian inference, the uncertainty in an inferred parameter is computed by sampling 

different realizations from the (generally not analytically tractable) posterior. Here, we have 

 

Figure 1 : Poloidal flux surfaces 

inferred for MAST shot # 24600 

at 280ms using pickup coils, flux 

loops and MSE. The solid black 

and white lines are the EFIT and 

Bayesian-inferred last closed 

flux surfaces, respectively.  
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computed the q profile for each realization of current beams across the plasma, and rendered 

the ensemble of samples as a histogram, where the shading represents the density of samples. 

As in Hole et al [10], we have the inference 

of the toroidal magnetic flux function by 

using the static-plasma Grad-Shafranov 

equation as a constraint, and folding in 

measurements of the toroidal current 

density and pressure gradient [9 ,10] and 

inferred the toroidal magnetic flux 

function.  Replacing this in the vacuum 

field solution for MINERVA accounts for 

poloidal currents. The right axis of Fig. 2 

shows the change in the q profile due to 

this correction.  

 

2.1  Thomson Scattering and Charge 

Exchange Recombination Spectroscopy 

We have implemented Bayesian inference for the 

Thomson Scattering diagnostic: Figure 3 shows a 

preliminary Bayesian inference for the 

expectation of electron density ne and 

temperature Te.  Profiles for the density and 

temperature are similar to those extracted 

routinely from MAST using least squares 

fitting.  

We have also implemented Bayesian inference 

for the Charge Exchange Recombination 

diagnostic. The forward model is based on the 

work of Wisse [16]. Figure 4 shows preliminary 

results of Bayesian inference for the expectation 

of ion density, ion temperature and ion flow 

speed parallel to line of sight at intersection 

with neutral beam.  For this discharge, 

background subtraction was based on linear 

interpolation (in flux-coordinates) between the 

SouthWest (SW) neutral beam lines-of-sight 

and passive line-of-sight, and a new deconvolution algorithm written. The density profile is 

missing an absolute calibration, and so we have normalised it to the density at the static Grad-

Shafranov magnetic axis, located at a major radius of 0.94m.   

 

Figure 2: Safety factor q profile as a function of 

normalized poloidal flux found by sampling the 

posterior 200 times for shot #24600 at 320ms. 

The poloidal flux is normalized such that n=0 is 

the magnetic axis and n=1 is the edge. Also 

shown is qold/qnew obtained by correcting the 

toroidal flux function to account for poloidal 

currents  

 

Figure 3: Bayesian inference of (a) ne and (b) 

Te from Thomson scattering system for 24600 

at 280ms. 

 

Figure 4: Bayesian inference of (a) ni and (b) Ti 

and (c) flow speed vi parallel to line of 

intersection with neutral beam for discharge 24600 

at 280ms. 
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3.0. A Bayesian approach to mode inference 

A second objective of the project is to develop a Bayesian inversion tool to test predictions of 

MHD mode theory, particularly mode structure. We have pursued this task in H-1 plasmas by 

inference of the mode set H=(m,n,f) with m,n the poloidal and toroidal mode number, and f 

the frequency.  In Sec. 3.1 we implement this approach on Mirnov coil data using a reduced 

cylindrical plasma model to produce prior MHD eigenfunctions.  In Sec. 3.2, we report on 

development of Bayesian inference for density and temperature using a forward model for the 

H-1 interferometer and imaging Doppler spectroscopy system. This is complementary to 

inference of H, as the mode frequency is a function of the density profile.  

3.1. Bayesian inversion for candidate modes in MINERVA 

We have modelled H-1 plasmas using a stellarator normal-mode formulation [17], obtained by 

linearizing a set of stellarator ideal reduced MHD equations [18], neglecting toroidal effects. 

The model has been extended to incorporate a vacuum region, and used to compute Global 

Alfven Eigenmodes (GAEs) for the H-1 Heliac.[14] To quantify agreement to field 

oscillations at the H-1 poloidal Mirnov array, we have developed a Bayesian inference 

technique to contrast and compare between alternate GAE solutions. This represents a first 

attempt to statistically ascertain the confidence in the mode fit, as compared to alternate fits 

and the background field. 

Figure 5 shows three alternate candidate solutions, 

denoted H0, H1, and H2 to describe the variation in 

fluctuation strength as a function of poloidal coil 

number for H-1. These solutions are the 

equilibrium field  H0= { 0,0,0 }, and the two 

cylindrical plasma GAE solutions H1= { 4,5,109.6 

kHz} and H2= { 4,5,109.6 kHz}. Also shown is the 

measured data for discharge 58063, which had 

spectral peak at 37.4 kHz . 

 

A Bayesian analysis requires us to compare and 

contrast between different solutions.  To proceed, 

we construct the hypothesis space H = {H1, H2, ,.... 

, Hn}, which is the set of candidate mode solutions 

about which we wish to make inferences, as well 

as the data space D = {D1,D2, ,.... , Dn}. We also 

require a forward model, F: H  D, which gives 

us the expected data D corresponding to different 

hypotheses H. [14]  

Assuming no prior knowledge, each hypothesis is 

equally likely, and our prior distribution is given 

by P(H0)=P(H1)=P(H2)=1/3.  As an illustration of the technique, we assume the error on the 

Mirnov coils is normal and independently distributed, with a variance of 0.1 on normalised 

measurements, and a standard deviation of 1kHz on the measured frequency. With these 

assumptions, the likelihood can be written P(D|Hi)= N (F(Hi,), 0)|D, where i=0,1,2 and 

0=diag(a1,a2,...,a13) with aj=0.1 for j=1,2,...,12 and a13=1. Here, N (, ) denotes a normal 

distribution with mean vector  and covariance matrix . Applying Bayes formula, Eq. (1), 

we obtain P(Hi|D)= N (F(Hi,), 0)|D / 3P(D) for each hypothesis.  

 

Figure 5.  Normalised magnetic field 

strength of measured data (dashed) in H-1, 

two GAEs H1 = {4, 5, 109.6 kHz} and H2 = 

{7, 9, 19.7kHz},.and the equilibrium field 

H0 = {0, 0, 0 kHz}, plotted against coil 

number.  The measured data is a root-

mean-square time average of poloidal 

Mirnov array data for discharge number 

58063, which had current winding ratio 

h=0.54. 
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To obtain relative probabilities we evaluate the conditional distribution at the dataset D58063, 

which is the root-mean-square time-averages of Mirnov array data from discharge 58063. 

Including frequencies in the solution sets H0, H1, and H2 yields relative probabilities 

P(H0|D58063)~0, P(H1|D58063)~0 and P(H2|D58063)~1, thereby concluding the (m,n) = (7,9) mode 

is the solution.  Ignoring frequencies yields P(H0|D58063)~0, P(H1|D58063)~0.29 and 

P(H2|D58063)~0.71, which confirms the overall better fit visible in Fig. 5 for the (7,9) mode.  

In either case we can reject the null hypothesis. 

While we have demonstrated Bayesian inference for the mode numbers and frequencies is 

possible, it offers little beyond visual inspection of competing solutions. A limitation of this 

technique is the small number of discrete candidate modes, as well as the disparate frequency 

and mode numbers of the different candidates. In ongoing work, we have refined our focus to 

study the Bayesian inference of radial mode structure from multiple diagnostics given mode 

numbers, frequencies, and taking as prior the radial envelope of the perturbed displacement 

from 3D ideal MHD code CAS3D [19].  

3.2. Bayesian inversion of an interferometer and imaging Doppler spectroscopy system 

In other work, we have also developed a forward model for the interferometer [20] and 

imaging Doppler spectroscopy system for H-1 plasmas, [21] and implemented it into 

MINERVA.  In order to account for configuration dependent diagnostic lines of sight a 

VMEC [22] node has been developed which returns surface step profile for a given H-1 

configuration.  The forward model for the interferometer is simply a line integration over the 

configuration-dependent electron density step profile.  The line intensity I(Te, ne) is estimated 

by a coronal equilibrium model, and we restrict the analysis to estimation of Te and ne from 

simulated H and H lines over a single set of chords.  For comparison with simulated data, 

the ratio 0/0 is used , in order to nullify calibration parameters common to both emission 

lines. Here, 0 and 0 are the emission intensity of the two lines.  

Simulated data is generated by using parabolic profiles, as shown in Fig. 6 with typical H-1 

values at the plasma core ne=10
18

 m
-3

, T = 20 eV.  For the simulated interferometric data the 

Gaussian error has standard deviation =10
15

 m
-2

, corresponding to 4% signal strength at the 

edge line of sight and 0.3% at plasma core.  The variation in 0/0 across the simulated 

lines of sight is only ~5% of the signal strength; in this case  is ~ 1% of the variation. 

 

 

Figure 6: Synthetic radial profile data for ne and Te for 

typical H1 profiles (blue). The symbol  is a 

normalised density, with =1 the plasma edge. 

 

Figure 7: Bayesian inference for electron density ne. 

The solid line is the posterior, the dashed line the prior 

and the red line the synthetic data chords. 
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Posterior distributions for the extracted parameters were computed using Markov Chain 

Monte Carlo sampling.  Figure 7 show the extracted posterior distribution function for ne for 

the six steps, together with the synthetic values and prior distributions. Although these results 

are promising, there is an overall absolute calibration which is unknown in the experiment, 

preventing application to real H1 data.  We plan to use build on this expertise to implement 

Bayesian inference of radial mode structure.  

4.0 Conclusions 

In this work we have described a Bayesian inversion framework for force balance and mode 

structure.  For equilibrium modelling in MAST we have reported on development of 

Bayesian inference for six diagnostic systems: current tomography folding together poloidal 

pickup coils, MSE data and flux loops; Thomson Scattering, Charge Exchange 

Recombination, and the diamagnetic loop.  We have also demonstrated these for a high 

performance MAST discharge.  Using the inferred plasma parameters and the Grad-

Shafranov equation, we have been able to infer the toroidal magnetic flux profile, and correct 

current tomography in MAST for poloidal currents.  The correction produces a 3% increase 

in the on-axis safety factor, and a 4% decrease near the plasma edge. This correction exceeds 

the intrinsic uncertainty in the q profile of ~2%.  

Motivated by the aim to resolve mode structure on H-1 using Bayesian inference, we have 

also introduced a Bayesian framework to select between competing mode choices, as 

computed by a reduced cylindrical model.  While successful, we have shown that a limitation 

of this technique is the small number of discrete candidate modes, as well as the disparate 

frequency and mode numbers of the different candidates.  In ongoing work, we plan to refine 

our focus to study the Bayesian inference of radial mode structure from multiple diagnostics 

given mode numbers, frequencies, and taking as prior the radial envelope of the perturbed 

displacement from 3D ideal MHD code CAS3D [19].  Finally, we have implemented 

Bayesian inversion for ne, Te, and Ti of synthetic data from a combined interferometer and 

imaging Doppler spectroscopy system. While the system was able to infer parameters near 

those synthesised, the technique requires the absolute calibration which is unavailable in the 

experiment.  We plan to use build on this expertise to implement Bayesian inference of 

radial mode structure. 
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