COPPERT

Applications for Mass-Reared Invertebrates

Karel J.F. Bolckmans Director Global R&D and Production

IOBC-AMRQC Vienna, October 19 – 23, 2010

COPPERT **Known Species of Organisms** Vertebrate Animals 297.326 59.811 Plants Mammals 5.416 Flowering plants (angiosperms) 258.650 Birds 9.956 Conifers (gymnosperms) 980 Reptiles 8.240 Ferns and horsetails 13,025 Amphibians 6.199 Mosses 15.000 Red and areen algae 9.671 Invertebrate Animals 1.203.375 Others 28.849 Insects 950.000 Molluscs 81.000 Lichens 10.000 Crustaceans 40.000 Mushrooms 16.000 Corals 2.175 Brown algae 2.849 Others 130.200 **TOTAL KNOWN SPECIES** 1.600.000 10 – 30 million species !!!

COPPERT

AMRQC 2010 conference

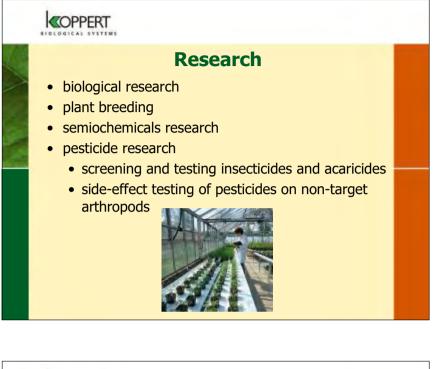
"A blueprint for the future" What do we need to do in order to achieve our Big, Hairy, Audacious Goal to eliminate pesticide usage ?

- professionalize arthropod mass-rearing
 - from a Bug Farm to a Bug Factory ? (EoS, Reliability)
 - from Quality Control to Quality Assurance ? IMRQA
 - new technologies ? (e.g. diets, symbionts, selective breeding, molecular tools, ...)
- new applications for mass-reared arthropods
 - learn from each other
 - provide a platform to meet and network

Mass-Rearing Arthropods


- Silk worm production (sericulture) started about 2.700 BC in China.
- The profession of mass-rearing arthropods is 4.700 years old.
- Arthropods provide many essential ecological services.
- Arthropods are a huge biological resource.
- What can we *learn* from arthropods ? How can we *use* arthropods in a sustainable way ? *How can mass-rearing arthropods contribute to a sustainable world ?*

	Nature as a Resource								
			BioUtilization Acquire or Use the Product or Producer	BioAssisted Domesticate the Producer	Nature as a Model BioMimicry <i>Emulate</i> <i>the Producer</i>				
	Natuur as Measure	Well- adapted	Sustainable Harvest	Natural Breeding	Mimicking form, process AND ecosystem				
		Mal- adapted	Unsustainable Harvest	Transgenics	Mimicking form alone. "Heat, Beat & Treat" Proces.				
	Harvest Harness Harmony Biologist at the Design Table, June 2008, Dupuyer, Montana								


Biological Control Agents

- parasites and predators for classical biological control and augmentative biological control
- Sterile Insect Technique (SIT) (incl. F1 sterility) Incompatible Insect Technique (IIT)
- *in vivo* production of insect viruses on Lepidoptera
- *in vivo* production of insect pathogenic nematodes

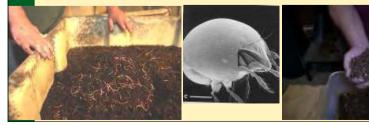
	Example : Abalone Nacre							
			BioUtilization	BioAssisted	Nature as Model BioMimicry			
			Acquire or Use the Product or Producer	Domesticate the Producer	Emulate the Producer			
	Natuur as Measure	Well- adapted	Sustainable Harvest of wild abalone for nacre	Natural Breeding of abalone for farming	Mimicry of nacre self-assembly process			
		Mal- adapted	Over-harvesting of wild abalone for nacre	Using genetic engineering of abalone to create "better"nacre	Production of high-tech ceramics using "Heat, Beat & Treat" Proces.			
		Biologist at the Design Table, June 2008, Dupuyer, Montana						

COPPERT

Education, Fun, Celebration

- educational purposes (e.g. Ladybug Changing Room)
- pet insects (e.g. walking sticks)
- insect zoo's, butterfly gardens
- butterfly releases
 - weddings
 - burial cerimonies

mealworms, wax-worms, crickets, locusts, fly maggots, superworms, wingless flies, springtails, cockroaches, bloodworms, nematodes, ...



Bioconversion of Manure and Organic Waste

- vermiculture (earthworms)
- decompiculture (e.g. termites, springtails, etc.)
- bioconversion with flies (Black Soldier Fly, Housefly)
- oriculture (oribatid mites)

\Rightarrow compost + arthropod biomass

Human Food "entomophagy"

- How to sustainably feed 9 billion people in 2050 ?
- crickets, grasshoppers, locusts, termites, beetle larvae, wasp larvae, bee larvae, caterpillars are among about 500 species that form part of the regular diet of people around the world.
- hunting and gathering vs. rearing.
- food conversion

- nutrient recycling : flies
 - mono-gastric animals : poultry, pigs, etc.
 - aquaculture : replacing fish meal

COPPERT

Production of Useful Compounds

- silk (sericulture), shellac, dies (cocheneal, kermes), enzymes, honey, royal jelly, wax, pollen, propolis, venom, ...
- recombinant baculovirus technology for protein expression and production in Lepidoptera

(viral antigens, esterases, virus-like particles, human growth factors, antibodies, etc.) (Agrivirion, C-perl)

COPPERT

Mass-Rearing Arthropods for Sustainability

- First time to include mass-rearing of arthropods for other goals than biological control in an AMRQC conference.
- Different businesses, similar rearing issues
 - Cost effectiveness
 - Reliability
 - Quality
- Learn from each other
- Mass-Rearing arthropods contributes to a sustainable world