Mass Production of Insects for Aquaculture

Market Perspectives for a Sustainable Protein Source

Sal Cherch, Vice President Organic Nutrition, LLC

AMRQC 12th Workshop, October 19-22, 2010 Vienna, Austria

Current Dependency on Fishmeal

Production					
Fishmeal: 5	major	produc	ina	countri	

	2003	2004	2005	2006	2007	2008
		(1000 tons	neo)			
Peru/Chile	1886	2915	2941	2232	2120	2063
Denmark/Norway	442	471	376	389	317	302
losland	271	204	179	162	135	251
Total	3388	3593	3486	2783	2717	2666
Courses IEEO	Constanting	defelore 10 c	attender.			

- ▶ The major source of dietary protein for fish, cattle, hog, poultry and mink diets.
- ▶ 10 countries produce 80% of world supply.
 - 3 are net importers
- Production down 20% in 2006, 5% in 2007, and another 4% in 2008
- 30% of world fish production goes to fishmeal and fish oil
 - Effect on wild stocks ??

Aquaculture Production Outlook 2030

- 40 billon pound/year shortage of seafood?
- Wild stocks fully exploited and declining
- World aquaculture increases to 75% of all seafood consumed?
- Quality feed ingredients to sustain industry growth?
 - Fishmeal and fish oil?

The Economic Impact of Fishmeal

- Fishmeal prices have forced many fish and livestock growers to seek alternative proteins
- Every metric tonne of meal travels an average of 5,000 km before it reaches the end user:
- Enormous economic implication in supplying global markets
- Large carbon footprint
- Baitfish stocks are down significantly while demand continues to grow

Right Space, Right Time

- Current Industry Bottlenecks
 - Lack of Sustainability
 - Diminishing Fishmeal Supply
 - Increasing Fishmeal/Feed Cost
 - Increasing Protein Demand
 - Increasing Carbon Footprint and Cost
 - Competing Non-food Uses for Grain Feeds
- Severe Ecological Consequences

Ento-Protein™

"It all starts with insects......"

- ▶ 18 months of cooperative research completed with Mississippi State University.
- Integrated research with Dept of Entomology; Dept. of Wildlife and Fisheries; and Dept. of Food Science & Technology.

Ento-Protein™

Cutting Edge Food Science Technology

- ▶ Ento-Protein[™] is created through a patentpending process of producing high-grade protein meal from commercially grown insects.
- Ento-Protein™ will be used to replace fishmeal in aquaculture and livestock diets

Research Trials

identification/qualification parameters
• Reduced to 4 primary insect species

Species

- Feeding trials conducted on hybrid striped bass, a carnivorous freshwater fish.
- Feed acceptability
- Feed conversion
- Digestibility
- Survival
- Post trial testing
 - Independent taste testing
 - Off flavor

Research Data Ento-Protein™

- No significant difference in diet acceptability
- FCR at 87% of fishmeal at 100% replacement.
- Digestibility at 97%
- Survival at 97%
- Taste tests indicated a preference for fish fed Ento-Protein™.

Organic Nutrition

Initial Nutritional Comparison to Fishmeal

Table 2. Comparison of the nutritional characteristics of selected insert species with common fish meals.

Ash Species (A, %)	Minerals (M. %).		LA	Lipids		Amino Acids (AA, % PR)			
		Ca	P	Total (L, %)	Linoleic (% L)	Protein (CP, %)	Arg	Met= Cys	Lys
A	4,7(0.2)	0.2(0.0)	0.9 (0.0)	21(1)	34(-)	66(1)*	7.1(-)	2.7(-)	6.3(-
В	3.1(0.2)	0.06(-)	0.7(-)	34(2)	29(-)	49(1)	5.9(-)	2,4(-)	6.2(-
C	16(1)	5.2(0.2)	1.2(0.3)	32(3)	3.3(-)	43(1)	5.1(-)	3.3(-)	6.4(-)
D	2.3(0.5)	0.04(-)	0.4(-)	57(2)	6.0(-)	36(2)	5.6(-)	2.6(-)	6.2(-)
Menhaden	20(-)	5.7(-)	3.3(-)	10.2(-)	1.1(-)	68(-)	5.9(-)	3.8(-)	7.7(-)
Herring		2.6(-)	1.9(-)	9.9(-)	1.5(-)	73(-)	5.9(-)	4.0(-)	8.0(-)
Anchovy	17(-)	4.3(-)	2.8(-)	8.6(-)	3.4(-)	70(-)	5.7(-)	4.0(-)	7.9(-)

Ento-Protein™

Comparison to other protein sources

Table 1a. Limited amino acid comparison of Poultry meal vs Fishmeal (as % or sample)

	Fishmeal*	Ento-protein**	Soybean meal ^	Poultry meal
Crude Protein	62-67	41.58 - 62.47	47	67
Fat	8-12	20.21 - 51.48	1.56	10.87
Ash	16-21	2.41 - 9.03	5.80	13.98
Omega 6	0.89	3.90 - 10.74	0.40	2.00
Omega 3	2.02	0.15 - 0.39	0.05	0.10
Limiting Amino Acid (%)				
Methionine	1.75	0.55 - 1.02	0.68	0.86 - 1.03
Lysine	4.88	2.01 - 3.60	3.03	2.65 - 2.81
Arginine	4.24	1.94 - 3.68	3.51	2.28 - 3.69

- * Menhaden meal analysis from Eurofin Scientific, 4/2007
- ** Initial analysis of 4 selected spp. from Eurofin Scientific, 4/2007
- Analysis courtesy of Zeigler Bros.

Organic Nutrition

Benefits to Global Aquaculture Industry

- Sustainability of feed.
- Allow unhindered growth of industry.
- Creates all-natural and certifiable organic feed.
- Insect species and diets can be altered to create species specific diets.